
Date of Publication: 3/22/2021

InRule Developer Guide

Help Documentation for the InRule Decision Platform

CONFIDENTIAL. Copyright © 2021 InRule Technology, Inc. All rights reserved.

If you have received this document by any other means than a download from
support.inrule.com or via an email from an InRule employee, please destroy it and retain
no electronic or printed copies.

Date of Publication: 3/22/2021

---- This page intentionally left blank ----

Date of Publication: 3/22/2021

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Published: March 2021 in Chicago, IL

InRule® Developer Help

© 2021 InRule Technology, Inc

Date of Publication: 3/22/2021

InRule Developer Help4

Table of Contents

Part I InRule SDK Developer's Guide 10

Part II Migration Considerations 12

Part III irSDK Object Model 20

Part IV Application Integration with InRule 22

... 231 InRule Product Architecture

... 232 Rule Execution Process Flow

... 243 irSDK Assembly Information

... 254 Using InRule NuGet Packages

... 285 Configuration Files

.. 28InRule Runtime Config File Settings

... 32InRule Logging Config File Settings

... 35Rule Application Cache Settings

... 36Data Query Cache

... 38EndPoint Assemblies Folder

... 39Execute Query Timeout

... 40.NET Framew ork Runtime Config Settings With InRule

.. 40InRule Catalog Service Config File Settings

... 42Additional Catalog Service Config Settings

.. 45InRule Authoring/Client Config File Settings

.. 46InRule Runtime Service Config File Settings

... 506 Performance Logging and Monitoring

.. 50Event Log Details

... 51Runtime Event Log Details

... 52Runtime Error Level Logging

... 53Runtime Warn Level Logging

... 54Runtime Info Level Logging

... 54Compile Event

... 56Create Entity Event

... 57Apply Rules Event

... 59Execute Rule Set Event

... 61Repository Event Log Details

.. 64Performance Statistics Report

... 657 irServer - Rule Execution Service

.. 66Accessing via SOAP

... 67Adding a Service Reference in Visual Studio

... 68Calling irServer SOAP Endpoint using a Service Reference

... 70
Executing a Decision on irServer SOAP endpoint using a Service

Reference

... 71Configuring irServer SOAP Endpoint to Support WsHttpBinding

... 72Handling irServer SOAP Endpoint Error Conditions

... 74Caching Behavior

Date of Publication: 3/22/2021

5Contents

5

.. 75Accessing via REST

... 76Methods

... 77Apply Rules

... 85Execute Decision

... 92Execute Independent Rule Set

... 104Execute Rule Set

... 114HTTP Request Member Definitions

... 115Parameter

... 115RuleApp

... 116RepositoryRuleAppRevisionSpec

... 116RuleEngineServiceOptions

... 117RuleEngineServiceOutputTypes

... 117Overriding RuleApp Endpoints at Runtime

... 118Database Connection String

... 118Mail Server Connection

... 119Web Service Address

... 119Web Service WSDL Uri

... 120Web Service MaxReceivedMessageSize

... 121XML Document Path

... 121XML Schema

... 122XML Schema Validation

... 122Inline Table

... 123Inline XML Document

... 124Inline Value List

... 124SQL Query

... 125REST Service X.509 Certificate Path

... 126REST Service Authentication Type

... 126REST Service Root Url

... 127REST Service Allow Untrusted Certificate

... 127Enabling Web-based help

... 128Source Code Examples

... 1288 Calling InRule from BizTalk Server

.. 128Calling InRule from a BizTalk Orchestration

.. 129Using irAdapter for BizTalk Server

.. 132Using the BizTalk Message Assignment Shape

... 1339 Calling InRule from Windows Workflow Foundation

.. 133Installing the Activity

.. 134Configuration of the Activity

.. 137Rule Execution Log Service

... 13810 .NET Assembly Object State

.. 138Differences in Assembly Binding Behavior at Runtime vs Authoring-time

.. 140Binding to Collections

.. 141.NET Assembly State Refresh Options

... 14111 InRule Culture Settings

... 14212 Interacting with Non .NET Platforms

... 14213 Embedding Authoring Controls

.. 143The Process of Embedding InRule Controls

.. 145WinForm Considerations

... 14514 Customizing irAuthor with Extensions

.. 146The Rule Authoring Framework

.. 147Example of Creating an irAuthor Extension

.. 151Extension Advanced Topics

Date of Publication: 3/22/2021

InRule Developer Help6

... 15515 License Activation Utility

... 15916 InRule Temp Files

... 16017 irSDK for .NET Core

Part V Implementation Guide 166

... 1661 High-level Implementation Guidelines

.. 166Anatomy of a Rule Request

.. 168Typical Rule Request Workflow

.. 173Service-Oriented Rule Architectures

... 1742 Application Architectures

.. 175Rule Services

.. 176Web Applications

.. 177ESB and Messaging

.. 178Job Scheduling and Batch Processing

.. 179Desktop and Disconnected Applications

... 1803 Common Integration Scenarios

.. 181Web Services

.. 182ASP.NET MVC

.. 183BizTalk

.. 184Dynamics CRM

.. 186SharePoint

.. 187Entity Framework

.. 188Enterprise Rule Services

... 1894 Rule Deployment

.. 190Rule Management with Multiple Catalogs

.. 191Rule Management with Labels

.. 192Rule Management Hybrid

.. 193Rule Management with Files

.. 194Catalog Deployment with Co-located Services

.. 195Catalog Deployment with Separate Servers

... 1965 Performance Tuning and Best Practices

.. 196Multi-threaded Rule Execution

.. 198Cold Start Mitigation

.. 202Managing the Rule Application Cache

.. 203Event Log

.. 204Rule Engine Execution Log

.. 205Hosting irCatalog on IIS vs Windows Services

Part VI Source Code Examples 208

... 2081 Runtime API Examples

.. 209Calling the Rules Engine - In Process

... 210Basic Example of Calling the Rule Engine

... 211Opening a Rule Application for Execution

... 211Creating a RuleSession

... 212Creating a RuleSession w ith Cache Retention

... 213Creating Entities

... 213Alternate w ays to Load State for Entities

... 214Retrieving Entity State

... 215Working w ith RuleSession State

.. 215Calling the Rules Engine as a Service

Date of Publication: 3/22/2021

7Contents

7

... 215Synchronously calling the REST Service

... 217Asynchronously calling the REST Service w ith JSON

... 219Asynchronously calling the REST Service w ith XML

... 221Calling the SOAP EndPoint using a Service Reference

.. 222Retrieving and Setting Fields and Entities

... 223Retrieving an Entity from the RuleSession

... 223Retrieving Fields

... 224Setting Fields

.. 224Working with Collections

... 224Looping Through a Collection

... 225Adding a Member to a Collection

... 226Resolving Field Types at Runtime

.. 227Executing Rules

... 227Applying Rules

... 228Applying Rules w ith an Activation Model

... 228Executing Decisions

... 229Executing an Independent Rule Set or Rule Flow

... 229Checking for Notifications and Validations

... 230Handling Exceptions

... 231Runtime Settings

... 232Retrieving and Processing the RuleExecutionLog

... 232Retrieving the Performance Log

... 233Retrieving the Performance Statistics Report

.. 234Working with the Rule Application Cache

... 234Adding Items into the Cache

... 234Managing the Cache

... 235Controlling Compilation and Cache Retention

... 236Iterating Items in the Cache

.. 237Working with Rule Application Metadata

... 237Using the RuleApplicationDef Object

... 238Retrieving Definition Objects at Runtime

... 238Using Element Metadata

... 239Working w ith Attributes

... 239Working w ith Value Lists

.. 240Other

... 240Launching irVerify and the State View er from code

... 241Overriding EndPoints at Runtime

... 242Overriding DataElements at Runtime

... 242Overriding Culture Settings at Runtime

... 243Rule Tracing Input and Output through irSDK

... 244Working w ith the Trace View er through irSDK

... 245Executing a Simple Test Suite

... 246Logging Metrics

... 2482 Authoring API Examples

.. 248Developing against the RuleApplicationDef Object Model

... 249Working w ith a RuleApplicationDef for Authoring

... 249Basic Example of Creating a Rule Application in Code

... 250Working w ith RuleSets

... 251Dynamically Generating a Rule Application Schema

... 253Modifying EndPoints

... 253Authoring a UDF in Code

... 254Inline table and Value lists access

.. 255Working with Advanced Definition Objects

... 255Removing Templates in the Language Editor

Date of Publication: 3/22/2021

InRule Developer Help8

... 256Determine FieldDef Dependencies

.. 257Working with the Regression Tester SDK

... 257Authoring a Simple Test Suite for Regression Testing

.. 259Embedding Authoring Controls

... 260Embedding InRule Default Editors

... 261Embedding the Language Rule Editor

... 262Embedding the Decision Table Editor

... 262Embedding the Condition Editor

... 2633 Catalog API Examples

.. 264Creating a RuleCatalogConnection

.. 264Opening a RuleApplicationDef for Authoring from Catalog

.. 265Working with RuleApplicationDef in the Catalog

.. 266Working with Rule Elements in the Catalog

.. 266Sharing Elements in the Catalog

.. 267Performing Rollbacks in the Catalog

.. 269Promote a Rule Application from Catalog to Catalog

Part VII InRule Samples 271

Part VIII Regression Testing 273

... 2731 Regression Testing Concepts

... 2742 Authoring Test Suites

... 2773 TestScenario versus EntityState Data States

... 2774 Executing Test Suites

... 2785 Command Line Interface

Part IX Rule Tracing 283

... 2831 Rule Tracing Concepts

Part X Attribution 286

Index 287

Date of Publication: 3/22/2021

InRule SDK Developer's Guide

Part

I

Date of Publication: 3/22/2021

InRule Developer Help10

1 InRule SDK Developer's Guide

Welcome to the InRule SDK Developer's Guide

InRule® can be developed with and deployed in a variety of configurations in order to meet the your
business needs while complying with your enterprise standards and practices. To facilitate this,
InRule provides an extensive .NET object model to allow tight integration with your end business
applications.

Nearly any type of application or process can benefit from integrating with the InRule rules engine
and catalog. Whether web-based, smart client, or a services oriented architecture, InRule can
provide centralized decision-making to drive interfaces and manage enterprise-wide computations.

The following sections describe how to integrate InRule into your application:

Migration Considerations

irSDK® Object Model

Application Integration with InRule

Implementation Guide

Source Code Examples

Runtime API

Authoring API

Catalog API

InRule Samples

Regression Testing

Rule Tracing

Date of Publication: 3/22/2021

Migration Considerations

Part

II

Date of Publication: 3/22/2021

InRule Developer Help12

2 Migration Considerations

Overview

As of InRule version 4.5.0 and later, several changes to rule applications, file formats, configuration
settings, and the InRule SDK were introduced, including changes to some of the core classes and
methods to execute rules. Please refer to the following resources for guidance on how to change
your applications to be compatible with this new version:

This “Migration Consideration” section

Transition Guide, which can be downloaded from the InRule Support website using the
following link: https://support.inrule.com/cs/media/p/968.aspx

Runtime API Examples in this help file

InRule Samples on GitHub

User Assemblies

As of version 4.5, InRule no longer supports the placement of user assemblies in the irAuthor® folder.
You should instead copy user assemblies to the irAuthor\EndPointAssemblies folder. The

standard load sequence for user assemblies is:

The Global Assembly Cache (GAC)

CurrentAppDomain.BaseDirectory

Configured EndPointAssemblies directory

Rule Application Changes

The following rule application functions have changed in version 4.5:

Fire Event Action. The Fire Event Action has been replaced with the Fire Notification action.
Existing rule applications will be upgraded automatically.

Web Service Endpoint. Existing rule applications which contain Web Service endpoints will
be automatically upgraded when opened. However, if the web service URI stored in the rule
application is invalid at the time of the upgrade, any Execute Web Service Action mapping
entries will be lost. If the rule application is opened from the file system, the irAuthor user will
be warned about the upgrade; if the rule application is stored in the catalog, this warning will
be presented during the catalog upgrade operation.

XML Schema Endpoint. Existing rule applications which contain XML Schema endpoints will
require an authoring user to reload the XSD (unless embedded), then apply to schema (even if
embedded).

Database Schema/XSD DataSet Schema. Existing rule applications using a Database
Connection Schema or an XSD Schema where the XSD is a DataSet XSD will work in basic
scenarios, such as modify XML-loaded state and get XML. However, automatic constraint and
identity-field assignment on Add Collection Member will not work. Please contact InRule for
assistance in implementing a custom state provider to directly update a DataSet instance.

Default Value with Object-Bound State. When using a .NET assembly endpoint, default
values authored on the rule application for any bound entity fields are ignored, unless runtime
binding is explicitly disabled via the irSDK.

Default Value with non-Object-Bound State. When not using a .NET assembly endpoint,
the default value behavior is similar to version 4.1, with one important distinction. In version
4.5, InRule applies the default value only when an entity is first created, while version 4.1
applies the default value any time the field is null (including if an action sets it to null during
rule execution).

Aggregate Function Syntax. InRule version 4.1 allowed a user to specify a syntax such as
Sum(Collection1.Collection2, Collection2Field1, "filterval"). The supported

https://support.inrule.com/cs/media/p/968.aspx

Date of Publication: 3/22/2021

Migration Considerations 13

syntax in version 4.5 is Sum(Collection2, Collection2Field1, "filterval"). For

example, Sum(Vehicles, Premium, Year=1999).

Configuration Changes

The following configuration file settings have changed.

InRule Repository Configuration

Sub Section Setting Name Changes

assemblyEnd
Point

shadowCopyDirectory Removed

shadowCopyEndPointAsse
mblies

Removed

licensing
cryptographyRequired Removed

InRule Runtime Configuration

Sub Section Setting Name Changes

dbCommand
dbCommandTimeout Removed

locale
culture Removed

ruleEngine
emptyNodeForValueTypes
OutputFormat

Removed

nullZeroEquality Removed

ruleTimingEnabled Removed

webServiceC
onnections

disableBindingOverrides Removed

workingMemo
ry

workingMemoryCacheClea
nUpInterval

Removed

workingMemoryCacheTim
eout

Removed

InRule Authoring/Client Configuration

Sub Section Setting Name Changes

catalogClient
maxItemsInObjectGraph Removed

ruleEngineCli
ent

ruleExecutionTimeout Removed

runawayCycleCount Removed

useRuleEngineServiceForIr
Verify

Removed

Date of Publication: 3/22/2021

InRule Developer Help14

useRuleEngineServiceRep
ositoryService

Removed

tracing
bufferLogWrites Removed

bufferSize Removed

logActivities Removed

userInterface
helpFileDirectoryPath Removed

MRUFileNamesMaxLength Removed

ShowDebugForEntityState
ViewerinIrVerify

Removed

udfEditorAutocompletionEn
abled

Removed

Test Scenario File Changes

Test Scenario files are now stored in a proprietary binary format, rather than the XML format of
previous InRule versions. Older Test Scenario files will not work with InRule version 4.5. If you
require the use of prior release Test Scenario files, download the Test Scenario file upgrade program
from the InRule support site, and follow the instructions on the site.

User Defined Function Changes

Refer to the InRule Authoring Guide for changes to User Defined Functions.

irSDK Changes

The following assemblies have been removed:

inrule.common.xmlserializers.dll

inrule.runtime.xmlserializers.dll

inrule.scripting.dll

The following namespaces have been removed from irSDK:

InRule.Runtime.Messages

InRule.Runtime.Metadata

InRule.Runtime.Statistics

Changes in the Runtime API (InRule.Runtime)

Class Member Changes

CachedRuleApp
Removed

Collection
AddCollectionMember Add()

AppendCollectionMember Add(object)

CollectionDef GetDef()

CollectionMember
GetEntity Value.ToEntity()

CompilerErrorInfo
CompilerError

Date of Publication: 3/22/2021

Migration Considerations 15

ElementValue
ToDouble Removed

ToElementIdentifier Removed

ToEntityIdentifier Removed

ToInt16 Removed; use ToInt32()

ToString(bool) Removed; use ToString()

Entity
ChildRuleElements RuleSets

CollectionChanged Removed

EntityDef GetDef()

EntityId ElementId

EntityStateLoaded Removed

ExecuteRuleSet(string,
RuleSetParameter[])

ExecuteRuleSet(string, object[])

GetCollection Collections[string]

GetField Fields[string]

GetField(XPathExpression) Removed

State.GetXml WriteXml(XmlWriter)

for example:

StringBuilder sb = new

StringBuilder();

XmlWriter writer =

XmlWriter.Create(sb);

entity.WriteXml(writer);Return

sb.ToString();

State.Load ReadXml(string)

State.LoadXml ReadXml(XmlReader)

for example:

entity.ReadXml(XmlReader.Create(new

StringReader(string xmlString)));

State.Save WriteXml(string)

ValidityChanged Removed

ValueChanged Removed

EntityIdentifier
Removed; use ElementId, which is a string

Field
FieldDef GetDef()

GetValueList() AssociatedValueList

SetValue Value

FileSystemRuleAp
p

FileSystemRuleApplicationReference

FixedRevisionRule
App

Removed

Date of Publication: 3/22/2021

InRule Developer Help16

InMemoryRuleApp
InMemoryRuleApplicationReference

InProcessConnecti
on

Removed

ListItemValue
ValueListItem

ObjectEntityState
Removed; to bind an Entity, use
RuleSession.CreateEntity(string, object)

RepositoryRuleApp
CatalogRuleApplicationReference

RuleApp
RuleApplicationReference

RuleCompileErrors
Exception

CompileException (in InRule.Repository)

RuleElement
RuleElementDef GetDef()

RuleRuntimeErrors
Exception

RuntimeException

RuleServiceConne
ction

Removed

RuleSession
ActivateRuleSets(string[]) ActivateRuleSets(string)

ActivateRuleSetsByCatagor
y(string[])

ActivateRuleSetsByCategory(string)

AggExecStats Removed; use Statistics or assorted new
members in the RuleSession class

AggExecStats.AggExecStatI
nfo.GetHtml()

LastRuleExecutionLog.GetHtml()

CreateRuleSet CreateIndependentRuleSet

DataElementOverrides Overrides.Override*()

DeactivateRuleSets(string[]
)

DeactivateRuleSets(string)

EventFired Removed; the "fire event" action is no longer
supported

LoadState Syntax is unchanged, but the RuleSession
state file is a proprietary format instead of
XML

RuleApplicatonDefInfo GetRuleApplicationDef()

RuleApplicationInfo Removed

State.GetActiveNotifications GetNotifications()

State.GetActiveValidations GetValidations()

Date of Publication: 3/22/2021

Migration Considerations 17

RuleSessionSettin
gs

RuleExecutionSettings Removed; use assorted new members in the
RuleSessionSettings class

RuleExecutionSettings.Curr
entDateOverride

Now

RuleExecutionSettings.Enab
leRuleExecutionTracing

LogOptions; uses the EngineLogOptions enum

RuleExecutionSettings.Exec
utionTimeoutOverride

ExecutionTimeout

RuleExecutionSettings.Inclu
deAttributeTables

Removed

RuleExecutionSettings.Inclu
deDescriptiveDetail

Removed

RuleExecutionSettings.Inclu
deRules

Removed

RuleExecutionSettings.Max
EvaluationCyclesOverride

MaxCycleCount

RuleExecutionSettings.Retu
rnDetailStatisticsInfo

LogOptions; uses the EngineLogOptions enum

MaxDegreeOfParallelism Use MaxExecutionCores

RuleSet
ChildRuleElements RuleElements

RuleSetDef (RuleSetDef)GetDef()

RuleSetParameter
Removed

TransactionMessa
ge

LogMessage

Validation
InvalidMessageText Message

WebServiceConne
ction

Removed

Changes in the Catalog API (InRule.Repository)

The Evaluation Network (EvalNetwork) and related classes have been replaced by the
DefUsageNetwork. See Determine FieldDef Dependencies for a sample of how to use the
DefUsageNetwork.

Additional Considerations (from 3.x)

If you are upgrading from InRule version 3, then please note these additional considerations:

InRule Version 4 requires the Microsoft .NET 4.0 runtime.

Licensing for InRule version 4 will require a different serial number than the number used to
activate version 3. Please contact your sales representative to obtain an InRule version 4
serial number. The InRule.lic file is no longer supported, and licenses must be specifically
registered on each machine on which InRule is used.

Date of Publication: 3/22/2021

InRule Developer Help18

WinForm authoring controls have been removed from irSDK. These controls have been
replaced with WPF 4.0 controls that are publicly available.

ASP.NET authoring controls have been removed from irSDK. These controls have been
replaced with Silverlight 4.0 controls that are publicly available.

Assembly changes

Assembly Change Change description

InRule.Authoring.Editors Added This DLL is required to consume InRule WPF
controls in a custom rule authoring application.

InRule.Authoring.Windows.
dll

Added

This DLL is may be required to consume some
InRule WPF authoring functionality in a custom
rule authoring application.

This DLL may be copied as a dependency if
InRule. Authoring.Editors is referenced

InRule.Authoring.dll Added This DLL is may be required to consume some
InRule WPF authoring functionality in a custom
rule authoring application.

This DLL may be copied as a dependency if
InRule. Authoring.Editors is referenced

InRule.Authoring.UI.dll Removed This DLL, along with the Windows Forms
controls it contained in InRule 3.x are no
longer supported.

Date of Publication: 3/22/2021

irSDK Object Model

Part

III

Date of Publication: 3/22/2021

InRule Developer Help20

3 irSDK Object Model

InRule's irSDK contains a rich object model providing all of the properties, methods, and events
required to manage most rule-enabled scenarios. Below are the core assemblies and namespaces
that comprise irSDK. The assemblies are installed in <InRule installation directory>\irSDK\bin by
default.

The namespaces contained in irSDK fall into two logical groups:

Runtime API - runtime execution namespaces for requesting rules execution and processing
results

Authoring API - rule authoring namespaces for creating rules in code and embedding
authoring controls

 Runtime Execution Namespaces

InRule.Runtime
Used to execute rule applications

Typically the primary namespace used by developers to call the rules engine

Assembly: InRule.Runtime.dll

InRule.Runtime.Testing
irVerify® integration and execution statistics

 Rule Authoring Namespaces

InRule.Repository
Used to create and maintain rule applications

Every necessary rule element is available to create rule applications in code

Both irAuthor uses this namespace exclusively

Assembly: InRule.Repository.dll

InRule.Authoring.Editors, InRule.Authoring.BusinessLanguage
Classes and methods to embed authoring controls in a host application

Assemblies: InRule.Authoring.Editors.dll, InRule.Authoring.BusinessLanguage.dll

InRule.Security
Set of classes and namespaces to assign rights to element types with the rule application

Assembly: InRule.Repository.dll

Date of Publication: 3/22/2021

Application Integration with InRule

Part

IV

Date of Publication: 3/22/2021

InRule Developer Help22

4 Application Integration with InRule

The InRule Rules Engine can be integrated into end applications in many different ways. Typical
implementations range from calling the rules engine as a simple calculation engine to driving
dynamic surveys incorporating rules and metadata to influence UI display, validation, and navigation.

Application Integration Topics

InRule Product Architecture

Rule Execution Process Flow

irSDK Assembly Information

Using InRule NuGet Packages

Configuration Files

Performance Logging and Monitoring

irServer® - Rule Execution Service

irAdapter for BizTalk Server

InRule Activity for Windows Workflow

.NET Assembly State Refresh Options

InRule Culture Settings

Interacting with Non .NET Platforms

Embedded Authoring Control

Customizing irAuthor with Extensions

License Activation Utility

InRule Temp Files

irSDK for .NET core

Core Runtime Objects used to call the Rules Engine

Refer to the source code example: Basic Example of Calling the Rule Engine to see how to use these
objects in code.

RuleSession
Session object that manages all of the rules engine request directives and execution results

RuleApplicationReference
Instance of a runtime rule application

Derived Classes: FileSystemRuleApplicationReference, CatalogRuleApplicationReference,
InMemoryRuleApplicationReference

Entity
Holds data for the rules engine

State may be saved and loaded as needed

Date of Publication: 3/22/2021

Application Integration with InRule 23

4.1 InRule Product Architecture

InRule's product architecture consists of:

End User Tools: irAuthor, irVerify, irWord™, irCatalogManager (deprecated)

Services: irCatalog® Service, irServer Rule Execution Service

Developer Tools: irSDK

4.2 Rule Execution Process Flow

InRule's Rule Execution Process Flow is typified by the following diagram:

Date of Publication: 3/22/2021

InRule Developer Help24

4.3 irSDK Assembly Information

InRule's SDK contains a number of assemblies, combinations of which are needed for different
authoring and runtime scenarios.

The tables below cover the most common scenarios.

Scenario Assemblies

Custom authoring
application (WPF or
WinForms)

ActiproSoftware.Shared.Wpf

ActiproSoftware.SyntaxEditor.Wpf

InRule.Authoring

InRule.Authoring.Authentication

InRule.Authoring.Editors

InRule.Common

InRule.Repository

InRule.Runtime.Testing (only if irVerify is used)

irAuthor extension InRule.Authoring

Date of Publication: 3/22/2021

Application Integration with InRule 25

InRule.Authoring.Authentication

InRule.Authoring.Editors

InRule.Authoring.Windows

InRule.Common

InRule.Repository

Rule execution InRule.Common

InRule.Repository

InRule.Runtime

Windows Workflow
Foundation

InRule.Activities

InRule.Common

InRule.Repository

InRule.Runtime

4.4 Using InRule NuGet Packages

When you install irSDK, NuGet packages for the SDK assemblies will also be placed in a
"NuGetPackages" sub-folder.

Packages

Name Description

InRule.Activities Support for using InRule with Windows Workflow Foundation.

InRule.Authoring.Core Core Authoring SDK assemblies used for creating irAuthor

extensions. This package is also required for creating custom

authoring applications.

InRule.Authoring.SDK Authoring SDK assemblies used for creating custom authoring

applications. Includes assemblies needed at runtime when

executing outside irAuthor. irAuthor extension developers do not

need this package and should use the InRule.irAuthor.SDK

package instead.

InRule.irAuthor.SDK irSDK Authoring assemblies used for irAuthor extensions. This is a

metapackage with dependencies on other packages needed for

extension creators.

InRule.Common Common irSDK assembly used for integration with InRule®.

InRule.Repository Common Repository irSDK assemblies used for authoring and/or

runtime integration with InRule®.

InRule.Runtime Runtime integration with the InRule® Rule Engine.

InRule.Runtime.Salesfo
rce

Assembly to facilitate mapping between InRule Entities and

Salesforce® Platform objects.

Date of Publication: 3/22/2021

InRule Developer Help26

Licensing

The packages are licensed under the standard InRule End User License Agreement and the packages
metadata includes a link to this license. Installing the packages via most NuGet clients will require
you to explicitly accept the license.

When executing applications that consume these assemblies, the associated InRule license must be
activated.

Package Dependencies

In most cases, packages will depend on other packages based on the assembly dependencies. For
example, installing the InRule.Authoring.Core package will install the Authoring SDK assemblies, and
it depends on the InRule.Repository package in order to also install InRule.Repository.dll. The
InRule.Repository package depends on the InRule.Common package, which contains
InRule.Common.dll. It is generally only necessary to install the specific package you need for your
development scenario (InRule.irAuthor.SDK or InRule.Runtime, for example) and allow the
dependencies to install the remaining packages, if any.

Dependencies are set to specific versions, so if you upgrade a single package, all of the InRule
packages will also upgrade at the same time in order to meet the dependency requirements.
Typically, your NuGet client will handle this for you.

Versioning

The package versions will match the first three digits of the InRule product version number. Only the
first three digits are used to conform to the Semantic Versioning rules enforced by NuGet.

Consuming the Packages

While you may choose to publish the packages to your own private NuGet server, InRule does not
publish the packages to a public NuGet repository. If you do not wish to host your own NuGet server
(or use a third party service to host a private server), you can use a file folder as a NuGet source.

In Visual Studio, you can do this by going to the NuGet Package Manager and clicking the gear icon
next to the Package Source list, or going to the Visual Studio Options and selecting "Package
Sources" under "NuGet Package Manager"

Date of Publication: 3/22/2021

Application Integration with InRule 27

This will open the NuGet package sources options. Click the "+" icon to add a new source, then in the
"Source" field, use the "..." button to browse to the folder holding the NuGet packages:

Date of Publication: 3/22/2021

InRule Developer Help28

Click "Update" and "OK" to save the changes. Back in the NuGet Package Manager, in the "Package
Sources" drop-down, select the new location (or "All") to include the packages in that folder in your
NuGet repository.

4.5 Configuration Files

A variety of adjustable parameters or settings that are utilized by InRule are available as sections or
keys that can be added to configuration files. These settings govern the behavior of specific
functionality of InRule components.

The following topics describe InRule config file sections:

InRule Runtime Config File Settings

InRule Catalog Service Config File Settings

InRule Authoring/Client Config File Settings

InRule Rutime Service Config File Settings

The InRule configuration files can be found at the following locations:

Catalog Service
IIS - <InRule installation directory>\irServer\RepositoryService\IisService\Web.config
Windows Service - <InRule installation directory>\irServer\RepositoryService
\WindowsService\RepositoryWindowsService.exe.config

Rule Engine Service
IIS - <InRule installation directory>\irServer\RuleEngineService\IisService\Web.config
Windows Service - <InRule installation directory>\irServer\RuleEngineService
\WindowsService\RepositoryWindowsService.exe.config

irAuthor and irVerify
<InRule installation directory>\irAuthor\irAuthor.exe.config

4.5.1 InRule Runtime Config File Settings

Configuration Settings for Common Production Deployment Scenarios

InRule includes two configuration file sections that affect memory use, rule execution behavior,
timeouts, and licensing. The two configuration sections are inrule.runtime and inrule.repository. Most
production deployments have both of these sections defined for processes that are hosting the rule
engine. The settings for both sections are described below.

Alternatively many of these settings can be configured using AppSettings. If a value is set in both
AppSettings and the configuration sections, the AppSettings value will take precedence.

In addition to the summary tables below, the following links provide more detail about specific config file
settings in these sections:

InRule Logging Config File Settings

Rule Application Cache Settings

Data Query Cache

End Point Assemblies Folder

Execute Query Timeout

.NET Framework Runtime Config Settings With InRule

Date of Publication: 3/22/2021

Application Integration with InRule 29

For settings that affect logging behavior for the runtime please see InRule Logging Config File Settings.

inrule.runtime Config Section/AppSettings

The runtime settings allow specification of the parameters for runtime rule processing.

Sub Section Setting Name AppSettings Key Description

catalogRuleAp
plication

connectionTimeout inrule:runtime:catalogRuleAp
plication:connectionTimeout

(TimeSpan) The timeout
value for a successful
Catalog Service
connection. If the timeout
expires without a
successful connection to
the Catalog, an exception
will be thrown.

Default is 00:01:00 (one
minute).

refreshInterval inrule:runtime:catalogRuleAp
plication:refreshInterval

(TimeSpan) The time
interval for refreshing a
cached Rule Application
Reference from the
Catalog.

Default is 00:00:30 (30
seconds).

enableBackgroundCo
mpilation

inrule:runtime:catalogRuleAp
plication:enableBackgroundC
ompilation

(boolean) If true, the
polling operation to the
Catalog to see if a newer
rule application version is
available and, if
applicable, the download,
compilation and caching of
the new version will be
performed on a
background thread.

Default is false.

ruleEngine
captureLockOwnerSta
ckTrace

inrule:runtime:ruleEngine:cap
tureLockOwnerStackTrace

(boolean) If true, the
engine captures the stack
trace of a thread that has
become deadlocked during
a Rule Application compile.

Default is false.

compiledApplicationC
acheDepth

inrule:runtime:ruleEngine:co
mpiledApplicationCacheDepth

(integer) Determines the
number of unique
compiled rule applications
that are kept in memory.

If this number is
exceeded, the oldest
compiled rule application
is removed from the cache
in favor on the newest
compiled app.

Default is 25.

compileLockAcquisitio inrule:runtime:ruleEngine:co (TimeSpan) In case of a

Date of Publication: 3/22/2021

InRule Developer Help30

nTimeout mpileLockAcquisitionTimeout deadlock during a Rule
Application compile, the
amount of time before an
exception will be thrown to
break the deadlock.

Default is 00:30:00 (30
minutes).

enableBackgroundCo
mpilation

inrule:runtime:ruleEngine:ena
bleBackgroundCompilation

(boolean) If true, the
compilation and caching of
a new version, if
applicable, will be
performed on a
background thread.

Default is false.

Example:

 <appSettings>

 <add key="inrule:runtime:catalogRuleApplication:compiledApplicationCacheDepth"

value="25">

 <add key="inrule:runtime:catalogRuleApplication:refreshInterval"

value="00:00:30">

 </appSettings>

 OR

<configuration>

 <configSections>

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" /

>

 ...

 </configSections>

 ...

<inrule.runtime>

<ruleEngine compiledApplicationCacheDepth="25" />

<catalogRuleApplication refreshInterval="00:00:30"

cachePurgeInterval="00:10:00" />

</inrule.runtime>

inrule.repository Config Section/AppSettings

The repository settings allow specification of the parameters that impact both authoring time and
runtime behavior.

Sub Section Setting Name AppSettings Key Description

assemblyEndP
oint

endPointAssemblyPat
h

inrule:repository:endPoints:asse
mblyEndPoint:endPointAssemblyP
ath

(string) Denotes the
relative path to the
directory that contains
assemblies referenced
within various rule
applications. This
location is important
because it allows the
rule engine to load.

Default is
"EndPointAssemblies",

Date of Publication: 3/22/2021

Application Integration with InRule 31

which is relative from
the executing
assembly directory.

licensing
licenseFolder inrule:repository:licensing:license

Folder
(string) Determines
the custom directory
where InRule will look
to verify the license
file.

The search order for
the license file is as
follows:
1) Current directory
where application is
running
2) Bin directory (which
may be the same as
#1)
3) AppData directory
(which usually maps
to

C:\ProgramData
\InRule
\SharedLicenses)

4) Directory defined
by this configuration
setting

NOTE: This is the path
to the directory
containing the license
file, NOT the file itself.

Default is null.

Example:

 <appSettings>

 <add key="inrule:repository:endPoints:assemblyEndPoint:endPointAssemblyPath"

value="EndPointAssemblies">

 <add key="inrule:repository:licensing:licenseFolder " value="..\LicenseFile">

 </appSettings>

 OR

<configuration>

 <configSections>

 <section name="inrule.repository"

type="InRule.Repository.Configuration.RepositoryConfigSectionHandler,

InRule.Repository" />

 ...

 </configSections>

 ...

 <inrule.repository>

 <endPoints>

 <assemblyEndPoint

endPointAssemblyPath="EndPointAssemblies" />

 </endPoints>

 <licensing licenseFolder="..\LicenseFile" />

 </inrule.repository>

Date of Publication: 3/22/2021

InRule Developer Help32

4.5.1.1 InRule Logging Config File Settings

Detailed application event information from InRule can be logged to the Windows Application Event Log
by configuring the following section in a client config file:

 <configuration>

 <configSections>

 <section name="inrule.logging"

type="InRule.Repository.Logging.Configuration.LoggingSectionHandler,

InRule.Repository" />

 ...

 </configSections>

 ...

 <inrule.logging>

 <group typeName="InRule.Repository.Logging.Loggers.LoggerGroup,

InRule.Repository" level="Warn">

 <logger (see below)/>

 </group>

 </inrule.logging>

Group level settings can be one of: Debug, Info, Warn, Error, Fatal

Logger level settings:

Group level settings for all loggers can be set with AppSettings:

 <appSettings>

 <add key="inrule:logging:level" value="Warn">

 </appSettings>

Adding this setting will override all level settings for loggers.

Logger type settings:

EventLogLogger - records to the InRule event log. If the eventSource value is not specified,
it uses the InRule source.

 <logger typeName="InRule.Repository.Logging.Loggers.EventLogLogger,

InRule.Repository" >

 <option name="eventSource" value="InRule" />

 </logger>

FileLogger - records to a file. If "filename" option is not specified, it records to %TEMP%
\InRuleFileLoggerLogs. FileLogger has the following parameters

 <logger typeName="InRule.Repository.Logging.Loggers.FileLogger,

InRule.Repository">

 <option name="filename" value="%TEMP%\YourApp.log"/>

 </logger>

XmlLogger is also available as an alternative to FileLogger

LibraryLogger - allows logging of application event information from InRule to 3rd party

Date of Publication: 3/22/2021

Application Integration with InRule 33

loggers including: Log4Net, Loupe, NLog and Serilog.

 <inrule.logging>

 <group typeName="InRule.Repository.Logging.Loggers.LoggerGroup,

InRule.Repository" level="Warn">

 <logger typeName="InRule.Repository.Logging.Loggers.LibraryLogger,
InRule.Repository" />

 </group>

 </inrule.logging>

Notes

For production SDK app deployments, an EventLogLogger is automatically created and used
(if no inrule.logging config entries present) if the InRule event log source(s) are registered,
otherwise a FileLogger is created and used to the default logfile location above.

InRule event logging should not be confused with RuleExecutionLog which returns rule
execution information in a rule session.

A setting of Debug should only be used for true debugging scenarios as it can slow overall
performance with the amount of information returned

Diagnostic settings for WCF Logging

If a WCF issue is suspected with an InRule service, WCF tracing is available to further diagnose
communication issues. WCF tracing is built on top of System.Diagnostics, which provides classes that
allow you to interact with system processes, event logs,and performance counters. WCF tracing can be
configured using the following config file settings.

Note: This should only be used for debugging as it can significantly reduce performance.

Example:

 <configuration>

 ...

 <system.diagnostics>

 <sources>

 <source name="System.ServiceModel"

 switchValue="Information, ActivityTracing"

 propagateActivity="true">

 <listeners>

 <add name="traceListener"

 type="System.Diagnostics.XmlWriterTraceListener"

 initializeData= "c:\log\Traces.svclog" />

 </listeners>

 </source>

 </sources>

 </system.diagnostics>

 ...

 </configuration>

irAuthor activity logging settings

An audit trail of user activities can be captured while authoring rules inside of irAuthor. This logging
information can be used in order to provide information to InRule in the case of an error situation. The
following settings can be used to configure how the logging will be managed. Log files are stored in the

Date of Publication: 3/22/2021

InRule Developer Help34

system defined temp directory on the author's machine.

Example:

 <configuration>

 <configSections>

 <section name="inrule.authoring"

type="InRule.Authoring.Configuration.AuthoringConfigSectionHandler,

InRule.Authoring.UI" />

 ...

 </configSections>

 ...

 <inrule.authoring>

 <tracing logFileCleanUpInterval="30.00:00:00" />

 </inrule.authoring>

 ...

 </configuration>

Info level logging SDK configuration

There are three types of Info level log messages that can be emitted from the RuleSession:

CreateEntity

CreateDecision

ExecuteRules

These types can be configured at a granular level via the RuleSession.Settings.InfoLevelLogging
property. This is a [Flags] enum type so multiple combinations may be applied as needed.
If Info level logging is enabled in the .config file, then all three will be applied by default. If a lower level
logging is enabled (e.g. Warn, Error), then none of them will be applied by default.
The granular types may be added/removed regardless of the setting in the .config file.

Example showing how to remove CreateEntity logging and only include ExecuteRules logging if Info level
logging is enabled in the .config:
(Note the ^= operator removes the proceeding enum value if it exists in the current property value)

using (var session = new RuleSession(ra))
{

session.Settings.InfoLevelLoggingTypes ^= InfoLevelLoggingTypes.CreateEntity;

var invoice = session.CreateEntity("Invoice");
session.ApplyRules();

}

Example showing how to add ExecuteRules logging if Info level logging is disabled in the .config:
(Note the |= operator adds the proceeding enum value if it does not exist in the current property value)

using (var session = new RuleSession(ra))
{

session.Settings.InfoLevelLoggingTypes |= InfoLevelLoggingTypes.ExecuteRules;

var invoice = session.CreateEntity("Invoice");
session.ApplyRules();

}

Date of Publication: 3/22/2021

Application Integration with InRule 35

4.5.1.2 Rule Application Cache Settings

The first time a Rule Application is requested, it must be compiled so the rules engine can execute
the rules. Once a Rule Application is compiled, it is stored in an AppDomain cache for subsequent
executions of the application.

The cache, by default, may store 25 Rule Applications at a time. Each time a Rule Application is
requested, the rule engine will first check to see if the Rule Application is in the cache. When a Rule
Application is requested that is not in the cache, it will be retrieved, compiled and then cached. If the
cache limit has been exceeded, one of the Rule Applications in the cache will be removed.

The cache depth can be modified by adding the following to the application configuration file:

 <appSettings>

 <add key="inrule:runtime:ruleEngine:compiledApplicationCacheDepth" value="25">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" />

 ...

 </configSections>

 ...

 <inrule.runtime>

 <ruleEngine compiledApplicationCacheDepth="25" />

 ...

 </inrule.runtime>

 </configuration>

FileSystemRuleApplicationReference, CatalogRuleApplicationReference and
InMemoryRuleApplicationReference all leverage caching. The methods with which the cache is
checked are as follows:

InMemoryRuleApplicationReference: A checksum is performed to see if the Rule
Application has changed. This check is more expensive than both the file system check and
lightweight Catalog check, which is why it is better to leverage
FileSystemRuleApplicationReference or CatalogRuleApplicationReference unless you are
modifying rules at runtime.

FileSystemRuleApplicationReference: A check is performed to see if the Rule Application
file timestamp has been modified.

CatalogRuleApplicationReference: When a Rule Application is pulled from the Catalog, it
is cached on the client, not the Catalog Service. If the compiled Rule Application is still in the
client cache and within the refresh interval when a new RuleSession is created with this
reference, the cached Rule Application is used. If the refresh interval has expired, InRule
performs a lightweight polling operation to the Catalog to see if a newer version is available.
If a new version is available, the latest revision is downloaded, compiled and cached. The
following configuration option may be used to change the default refresh interval:

 <appSettings>

 <add key="inrule:runtime:catalogRuleApplication:refreshInterval"

value="00:00:30">

 </appSettings>

Date of Publication: 3/22/2021

InRule Developer Help36

 OR

 <configuration>

 <configSections>

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" />

 ...

 </configSections>

 ...

 <inrule.runtime>

 <catalogRuleApplication refreshInterval="00:00:30" />

 ...

 </inrule.runtime>

 </configuration>

Note: This setting may be overridden via the SDK on a per Rule Application basis via
CatalogRuleApplicationReference.RefreshSettings.

By default, the check and recompilation of File System and Catalog Rule Applications will be
performed on the main thread. The following configuration option may be used to change the
compilation behavior to check and recompile on a background thread:

 <appSettings>

 <add key="inrule:runtime:ruleEngine:enableBackgroundCompilation"

value="true">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" />

 ...

 </configSections>

 ...

 <inrule.runtime>

 <ruleEngine enableBackgroundCompilation="true" />

 ...

 </inrule.runtime>

 </configuration>

Note: This setting may be overridden via the SDK on a per Rule Application basis via
FileSystemRuleApplicationReference.EnableBackgroundCompilation or
CatalogRuleApplicationReference.EnableBackgroundCompilation. The setting on
InMemoryRuleApplicationReference is ignored.

There is some overhead involved when a Rule Application is retrieved, compiled, and added to the
cache which will not be present on subsequent RuleSession creations.

4.5.1.3 Data Query Cache

The InRule Runtime can cache the results of data queries to reduce latency of querying external data
sources that can change infrequently.

The following InRule Queries may be cached:

Lookup() function

Date of Publication: 3/22/2021

Application Integration with InRule 37

TableLookup() function

QueryToList() function

IsInValueList() function

ValueListLookup() function

SQL query functions

Execute SQL Query action

Execute REST Service action

Query cache results are cached for any RuleSession in the current AppDomain. Queries that are
identical in their parameters across different RuleSessions and source Rule Applications will use the
same cached results.

The following query parameters are taken into account when comparing identity:

Data source, e.g. database connection string, REST service URL

Query text

Parameter values

Cache timeout

Data Elements

How the query results are cached depends on the type of Data Element used in the query, and on
any cache settings that may have been configured. The following illustrates the default cache timeout
values for different Data Elements; most of them are configurable.

Lookup and TableLookup functions

Target Timeout Configurable
Inline Table 300 seconds no
Linked Table 300 seconds yes

IsInValueList and ValueListLookup functions

Target Timeout Configurable
Query ValueList: Inline Table 300 seconds no
Query ValueList: Linked Table 300 seconds yes
Query ValueList: SQL Query 0 seconds yes

SQL Query function, Execute SQL Query action, and QueryToList() function

Target Timeout Configurable
SQL Query 0 seconds yes

Execute REST Service action

Target Timeout Configurable
REST Operation 0 seconds yes

Any Data Element configured with a zero second cache timeout will not enter the cache, which will
result in the target data source being queried each time.

Inline Tables queried by syntax functions will remain in the cache for 300 seconds (five minutes). the
underlying data cannot change (unless an override is applied), so they are kept for 300 seconds. The
query results are not kept indefinitely in order to allow memory to eventually be reclaimed if the host
process does not perform any inline Table queries for an extended period of time.

Date of Publication: 3/22/2021

InRule Developer Help38

The cache timeout on an SQL Query will override the setting of the target Inline Table or Linked
Table.

Cache Configuration

The underlying cache mechanism uses the System.Runtime.Caching.MemoryCache implementation
in the .NET Framework, which may be familiar to users of ASP.NET.

While cached query results may be configured to expire from the cache after a period of time, the
cache itself may evict query results when memory pressure is detected, to attempt to avoid an
OutOfMemoryException. The default settings cause the cache to poll memory usage every two
minutes, and start evicting query results when the cache uses approximately 60% of physical RAM.

If memory pressure is detected, the cache will start evicting query results using a Least-Recently-
Used (LRU) algorithm.

To change the default cache memory limit settings, add the following configuration element to the
application's .config file:

 <appSettings>

<add key="inrule:runtime:dataQueryCache:pollingInterval" value="00:00:10">

<add key="inrule:runtime:dataQueryCache:cacheMemoryLimitMegabytes" value="500">

<add key="inrule:runtime:dataQueryCache:physicalMemoryLimitPercentage"

value="20">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.runtime"

 type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler,

InRule.Runtime" />

 ...

 </configSections>

 ...

 <inrule.runtime>

 <dataQueryCache

 pollingInterval="00:00:10"

 cacheMemoryLimitMegabytes="500"

 physicalMemoryLimitPercentage="20" />

 </inrule.runtime>

 </configuration>

The above example changes the polling interval to 10 seconds, sets a cache memory limit of 500MB,
and sets a physical memory limit of 20%. If only one limit is used, either set the other limit to zero or
omit it altogether.

In practice, memory pressure detection does not trigger until a Generation 2 Garbage Collection
occurs.

If the Cache Memory Limit is used, the .NET Framework does not enforce this value as a hard limit;
the memory used may significantly exceed the configured valu8e until a Generation 2 Garbage
Collection occurs, at which point the cache will be trimmed to the configured value.

4.5.1.4 EndPoint Assemblies Folder

Date of Publication: 3/22/2021

Application Integration with InRule 39

.NET assemblies that are referenced from rule applications must be accessible to the rule engine for
execution. Referenced assemblies could include static function libraries, bound business objects, and
referenced type libraries. InRule will check several locations, in order, to locate any referenced
assemblies.

For in-process connections, the default folder locations for InRule to check for assemblies during
execution include the following:

irVerify: InRule\irAuthor\EndPointAssemblies

Custom .NET application: the application's bin directory

For out-of-process connections, the default folder locations for InRule to check for assemblies during
execution include the following:

IIS: InRule\irServer\RuleEngineService\IisService\bin\EndPointAssemblies

Windows Service: InRule\irServer\RuleEngineService\WindowsService\EndPointAssemblies

Other locations where assemblies may reside include the following:

Global Assembly Cache (GAC)

A user defined directory which is designated by adding the following setting to the application
config file:

 <appSettings>

<add key="inrule:repository:endPoints:assemblyEndPoint:endPointAssemblyPath"

value="EndPointAssemblies">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository"

type="InRule.Repository.Configuration.RepositoryConfigSectionHandler,

InRule.Repository" />

 ...

 </configSections>

 ...

 <inrule.repository>

 <endPoints>

 <assemblyEndPoint endPointAssemblyPath="EndPointAssemblies" />

 </endPoints>

 ...

 </inrule.repository>

InRule checks folder locations for assemblies in the following order:

1. Global Assembly Cache (GAC)

2. Location specified in config file

3. EndPointAssemblies folder

4. The calling application's binaries directory (.NET only)

4.5.1.5 Execute Query Timeout

Any database query executed using the Execute SQL Query Action has a default timeout of 30
seconds.This timeout can be modified by adding the following to the client configuration file:

 <appSettings>

<add key="inrule:runtime:dbCommand:dbCommandTimeout" value="50">

Date of Publication: 3/22/2021

InRule Developer Help40

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" />

 ...

 </configSections>

 ...

 <inrule.runtime>

 <dbCommand commandTimeout="50" />

 ...

 </inrule.runtime>

This commandTimeout maps to the standard .Net IDbCommand.CommandTimeout property and its
value is specified in seconds. In the above example, a wait time of 50 seconds is set, before
terminating to execute a command and generate an error.

4.5.1.6 .NET Framework Runtime Config Settings With InRule

The framework runtime settings give you the ability to specify the parameters of the Framework
runtime components, such as assembly redirection. Refer to .Net Framework documentation for
further information about framework runtime settings, which can be found here.

Note that for best performance in multi-core, free-threaded loading of the rule engine, the gcServer
element should have enabled set to "true".

Example

<configuration>

 ...

 <runtime>

<gcServer enabled="true" />

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity

name="Oracle.DataAccess"

publicKeyToken="89b483f429c47342" />

 <bindingRedirect

oldVersion="2.0.0.0-99.0.0.0"

newVersion="2.102.2.20"/>

 <!-- If using an ODP.NET endpoint, set this to version of ODP.NET you have

installed. -->

 </dependentAssembly>

 </assemblyBinding>

 </runtime>

...

</configuration>

4.5.2 InRule Catalog Service Config File Settings

Catalog Service Settings

The Catalog settings allow specification of the database and security settings for the Catalog service.

https://msdn.microsoft.com/en-us/library/6bs4szyc.aspx

Date of Publication: 3/22/2021

Application Integration with InRule 41

Many of these settings can be configured using AppSettings. If a value is set in both AppSettings and
the configuration sections, the AppSettings value will take precedence.

The InRule catalog service configuration files can be found at the following locations:

IIS - <InRule installation directory>\irServer\RepositoryService\IisService\Web.config

Windows Service - <InRule installation directory>\irServer\RepositoryService
\WindowsService\RepositoryWindowsService.exe.config

For settings that affect logging behavior for the catalog service please service see InRule Logging
Config File Settings.

inrule.repository.service Config Section/AppSettings

Setting Name AppSettings Key Description

uri N/A (string) Denotes the URL address where the
Catalog service will be published.

Note: this value will be set by the InRule
Configuration wizard during install time.

connectionString inrule:repository:service:c
onnectionString

(string) The connection string to the catalog
database. Note that for SQL Server and
Oracle, the specific ADO.NET data providers
are used, so they do not need to be
included in the connection string.

Note: this value will be set by the InRule
Configuration wizard during install time.

authentication N/A (string) The "type" attribute determines
which store the service will access when
authenticating users.

Possible values are:
Database -- the user store contained
within the catalog database schema
LDAP -- another user store that supports
LDAP authentication, such as Active
Directory
Custom

Note: this value will be set by the InRule
Configuration wizard during install time.

catalogType N/A (string) The type of database service that is
hosting the catalog database.

Possible values are:
SqlServer -- catalog hosted in Microsoft
SQL Server
MsOracle -- catalog hosted in Oracle 9 or
later with Microsoft Oracle ADO.NET
driver for catalog calls
OdpOracle -- catalog hosted in Oracle 9
or later with ODP Oracle ADO.NET driver
for catalog calls
Embedded -- reserved for future use

Note: this value will be set by the InRule
Configuration wizard during install time.

Date of Publication: 3/22/2021

InRule Developer Help42

Example:

<configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.S

ervice, PublicKeyToken=1feb8dd25b1ceb6b" />

 ...

</configSections>

...

<inrule.repository.service>

<uri>http://someuriaddress:8082/InRuleCatalogService</uri>

<connectionString>Server=DBServerName

\InstanceName;Database=InRuleCatalog;Trusted_Connection=yes</connectionString>

<authentication type="Database" />

<catalogType>SqlServer</catalogType>

</inrule.repository.service>

4.5.2.1 Additional Catalog Service Config Settings

The InRule catalog service has several relevant options that are adjustable in the configuration file
for the service.

The InRule catalog service configuration files can be found at the following locations:

IIS - <InRule installation directory>\irServer\RepositoryService\IisService\Web.config

Windows Service - <InRule installation directory>\irServer\RepositoryService
\WindowsService\RepositoryWindowsService.exe.config

Catalog Service configuration settings

Database Path

Maximum Number of Rule Elements

Lock Acquisition Timeout In Seconds

Command Batch Size

Enable Repository Service Aggregate Stats
Enable XACT_ABORT Support

Database Path

Database connection information for the catalog service is controlled by the settings contained in the
element entitled <inrule.repository.service>. The most common adjustment of this configuration
setting is to alter the database name to be utilized if irCatalog is installed in multiple locations. For
example:

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

Date of Publication: 3/22/2021

Application Integration with InRule 43

 </configSections>

 ...

 <inrule.repository.service>

 <uri>http://localhost/InRuleCatalogService</uri>

 <connectionString>Server=.\SQLEXPRESS;Database=InRuleCatalog;Integrated

Security=SSPI</connectionString>

 <authentication type="Database" />

 <catalogType>SqlServer</catalogType>

 </inrule.repository.service>

 ...

 </configuration>

Maximum Number of Rule Elements

The MaxItemsInObjectGraph parameter specifies the maximum number of rule elements that can be
saved to or retrieved from the catalog. The MaxItemsInObjectGraph parameter can be specified as
follows:

 <appSettings>

<add key="inrule:repository:service:maxItemsInObjectGraph" value="2147483647">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

 </configSections>

 ...

 <inrule.repository.service>

 <MaxItemsInObjectGraph>2147483647</MaxItemsInObjectGraph>

 </inrule.repository.service>

 ...

 </configuration>

Lock Acquisition Timeout In Seconds

The LockAcquisitionTimeoutInSeconds parameter specifies the maximum period of time to wait for a
lock acquisition to complete. The LockAcquisitionTimeoutInSeconds parameter can be specified as
follows:

 <appSettings>

<add key="inrule:repository:service:lockAcquisitionTimeoutInSeconds"

value="100">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

Date of Publication: 3/22/2021

InRule Developer Help44

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

 </configSections>

 ...

 <inrule.repository.service>

 <lockAcquisitionTimeoutInSeconds>100</lockAcquisitionTimeoutInSeconds>

 </inrule.repository.service>

 ...

 </configuration>

Command Batch Size

The CommandBatchSize parameter specifies the maximum number of sql statements per batch,
when it is submitted to the database server. The following is an example of the setting configuration
with this parameter specified:

 <appSettings>

<add key="inrule:repository:service:commandBatchSize" value="40">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

 </configSections>

 ...

 <inrule.repository.service>

 <commandBatchSize>40</commandBatchSize>
 </inrule.repository.service>

 ...

 </configuration>

Enable Repository Service Aggregate Statistics

The enableRepositoryServiceAggrStats parameter specifies if aggregate statistics shall be included in
the SOAP header for all Catalog responses. The following is an example of the setting configuration
with this parameter specified:

 <appSettings>

<add key="inrule:repository:service:enableRepositoryServiceAggrStats"

value="true">

 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

Date of Publication: 3/22/2021

Application Integration with InRule 45

 </configSections>

 ...

 <inrule.repository.service>

 <enableRepositoryServiceAggrStats>true</enableRepositoryServiceAggrStats>
 </inrule.repository.service>

 ...

 </configuration>

Enable XACT_ABORT Support

The enableXActAbortSupport allows Catalog Upgrader to run when XACT_ABORT is enabled in

SQL Server. The following is an example of the setting configuration with this parameter specified:

 <appSettings>

<add key="inrule:repository:service:enableXActAbortSupport" value="false">
 </appSettings>

 OR

 <configuration>

 <configSections>

 <section name="inrule.repository.service"

type

=

"InRule.Repository.Service.Configuration.ConfigSectionHandler,InRule.Repository.Servic

e" />

 ...

 </configSections>

 ...

 <inrule.repository.service>

 <enableXActAbortSupport>true</enableXActAbortSupport>
 </inrule.repository.service>

 ...

 </configuration>

Default values

The following table specifies the default values for each setting:

Parameter name Default value
MaxItemsInObjectGraph 2147483647
LockAcquisitionTimeoutInSeconds 30
CommandBatchSize 100
enableRepositoryServiceAggrStats false
enableXActAbortSupport false

4.5.3 InRule Authoring/Client Config File Settings

Authoring settings

The authoring settings allow to specify the parameters of the authoring experience, rule engine
connectivity, and catalog connectivity.

The irAuthor configuration file can be found at <InRule installation directory>\irAuthor
\irAuthor.exe.config.

For settings that affect logging behavior for authoring and the tester runtime please see the following
link -- InRule Logging Config File Settings

Date of Publication: 3/22/2021

InRule Developer Help46

inrule.authoring Config Section

Sub Section Setting Name Description

catalogClient
catalogServiceUri

(string) The URL address to the InRule Catalog
service.

Default is an empty string.

defaultLoginName (string) The default username that is used to
connect to the InRule Catalog.

Default is null.

ruleEngineClient
returnDetailStatisticsInfo

(boolean) Determines if irVerify will run rules
with full detailed statistics reporting.

Default is true.

ruleEngineServiceUri

(string) The URL address to access the InRule
Rule Engine Service.

Default is null.

tracing
logFileCleanUpInterval

(TimeSpan) The maximum age of a log file.
Expired files are deleted during irAuthor start-
up.

Default is "30.00:00:00" (30 days).

Example:

 <configSections>

 <section name="inrule.authoring"

type="InRule.Authoring.Configuration.AuthoringConfigSectionHandler,

InRule.Authoring.UI" />

...

</configSections>

...

<inrule.authoring>

 <catalogClient

 catalogServiceUri="http://localhost:8082/InRuleRepositoryService"

 defaultLoginName="username" />

 <tracing

 logFileCleanUpInterval="30.00:00:00" />

</inrule.authoring>

4.5.4 InRule Runtime Service Config File Settings

Runtime Service Settings

Specifies the root element for the Rule Execution Service configuration section and contains
configuration elements that control how the Rule Execution Service behaves.

inrule.runtime.service Config Section/AppSettings

Date of Publication: 3/22/2021

Application Integration with InRule 47

Sub
Section

Setting
Name

AppSettings Key Description

runtime catalogS
erviceUri

inrule:runtime:service:cata
log:catalogServiceUri

(string) URI to the irCatalog
Service.

Default is empty string.

userNam
e

inrule:runtime:service:cata
log:userName

(string) User name to be used
when authenticating against
irCatalog, if credentials were not
passed to irServer Rule Execution
Service. Only supported by the
REST Endpoint.

Default is empty string.

passwor
d

inrule:runtime:service:cata
log:password

(string) Password to be used when
authenticating against irCatalog, if
credentials were not passed to
irServer Rule Execution Service.
Only supported by the REST
Endpoint.

Default is empty string.

1. Locate the config file in the root of your irServer Rule Execution Service installation.
2. Navigate to the appSettings section
3. Add the key value pairs for catalogServiceUri, userName and password.

Example:

 <appSettings>

<add key="inrule:runtime:service:catalog:catalogServiceUri" value="http://

localhost/InRuleCatalogService/Service.svc"/>

<add key="inrule:runtime:service:catalog:userName" value="userName"/>

<add key="inrule:runtime:service:catalog:password" value="password"/>

 </appSettings>

OR

1. Locate the config file in the root of your irServer Rule Execution Service installation.
2. Navigate to the inrule.runtime.service configuration element.
3. Add the catalogServiceUri, userName and password attributes to the runtime element.

Example:

<configuration>

 <configSections>

 <section name="inrule.runtime.service"

type="InRule.Runtime.Service.Configuration.RuntimeServiceConfigSectionHandler, InRule.Runtime.Service" />

 ...

 </configSections>

 ...

 <inrule.runtime.service>

 <catalog catalogServiceUri="http://localhost/InRuleCatalogService/Service.svc"

 userName="userName"

 password="password" />

 </inrule.runtime.service>

 ...

</configuration>

The irServer Rule Execution Service supports storing irCatalog credentials in the config file for use by

Date of Publication: 3/22/2021

InRule Developer Help48

irServer's REST endpoint. These credentials are used only when no credentials (Username / Password or
Single Sign-On) are specified in the request. Note: This is supported only for the irServer Rule
Execution Service REST Endpoint.

Endpoint and Data Element Overrides

Endpoint and Data Element overrides may also be specified via AppSettings. However, any overrides
passed in the request will still take precedence over the AppSettings overrides.

The following Endpoints and Data Elements may be overridden by AppSettings:

AppSettings Key Description

inrule:runtime:overrides:<endpoint-
name>:DatabaseConnection:ConnectionString

(string) Database connection string.

inrule:runtime:overrides:<endpoint-
name>:SendMailServer:ServerAddress

(string) Mail server host name.

inrule:runtime:overrides:<endpoint-
name>:WebService:WsdlUri

(string) Web service WSDL URI.

inrule:runtime:overrides:<endpoint-
name>:WebService:ServiceUriOverride

(string) Web service SOAP end point URI.

inrule:runtime:overrides:<endpoint-
name>:WebService:WebServiceMaxReceived
MessageSize

(integer) Web service client max received
message size in bytes. (max 2147483647)

inrule:runtime:overrides:<endpoint-
name>:XmlDocumentPath:XmlPath

(string) XML document file path on Runtime
Service.

inrule:runtime:overrides:<endpoint-
name>:XmlSchema:XsdPath

(string) XML schema path or URL.

inrule:runtime:overrides:<endpoint-
name>:XmlSchema:EnableXsdValidation

(boolean) Whether to validate XML Entity state
against XSD. (true or false)

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceRootUrl

(string) REST service root URL.

inrule:runtime:overrides:<endpoint-
name>:RestService:AuthenticationType

(string) REST service authentication type.
(None, Basic, NTLM, Kerberos, Custom)

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceUserName

(string) REST service authentication
username.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServicePassword

(string) REST service authentication
password.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceDomain

(string) REST service authentication domain.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceX509Certificat
ePath

(string) REST service X509 client certificate
path on Runtime Service.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceX509Certificat
ePassword

(string) REST service X509 client certificate
password.

inrule:runtime:overrides:<endpoint-
name>:RestService:RestServiceAllowUntruste
dCertificates

(boolean) Whether to allow REST service
certificates not signed by trusted CA. (true or
false)

inrule:runtime:overrides:<dataElement-
name>:SqlQuery:Query

(string) SQL query text.

inrule:runtime:overrides:<dataElement- (string) XML serialized string of TableSettings

Date of Publication: 3/22/2021

Application Integration with InRule 49

name>:InlineTable:TableSettings object. (see 1.)

inrule:runtime:overrides:<dataElement-
name>:InlineValueList:ValueListItems

(string) XML serialized string of ValueListItem
collection (see 2.)

inrule:runtime:overrides:<dataElement-
name>:InlineXmlDocument:InlineXml

(string) XML document.

1. The following C# code can be used with irSDK to create the XML serialized TableSettings from a
DataTable:

TableSettings tableSettings = new TableSettings();

tableSettings.InlineDataTable.Columns.Add(new DataColumn("Column1", typeof(string)));

tableSettings.InlineDataTable.Columns.Add(new DataColumn("Column2", typeof(int)));

tableSettings.InlineDataTable.Rows.Add("One", 1);

tableSettings.InlineDataTable.Rows.Add("Two", 2);

StringBuilder sb = new StringBuilder();

using (XmlWriter writer = XmlWriter.Create(sb))

{

XmlSerializer xs = new XmlSerializer(typeof(TableSettings));

xs.Serialize(writer, tableSettings);

}

string serializedTableSettings = sb.ToString();

2. There is no irSDK data structure that can serialize the ValueListItems. The XML should be structured
as follows:

<ValueListItems>

<ValueListItem>

<DisplayText>value one</DisplayText>

<Value>value1</Value>

</ValueListItem>

<ValueListItem>

<DisplayText>value two</DisplayText>

<Value>value2</Value>

</ValueListItem>

</ValueListItems>

Example:

<appSettings>

<add

key="inrule:runtime:overrides:DatabaseConnection1:DatabaseConnection:ConnectionString

" value="Data Source = MyDbHost;Initial Catalog = Customer;Integrated Security =

SSPI;" />

<add

key="inrule:runtime:overrides:SendMailServer1:SendMailServer:ServerAddress"

value="smtp.mycorp.com" />

<add key="inrule:runtime:overrides:XmlSchema1:XmlSchema:EnableXsdValidation"

value="true" />

</appSettings>

Configuration Builders

AppSettings may be overridden by mechanisms other than the XML in the Rule Execution Service's

Date of Publication: 3/22/2021

InRule Developer Help50

.config file.

For example, system Environment variables matching the AppSettings key names may be used to
take precedence over the AppSettings defined in the XML .config file.
The Configuration Builders must be configured in the Rule Execution Service's .config file:

 <configSections>

 <section name="inrule.logging"

type="InRule.Repository.Logging.Configuration.LoggingSectionHandler,

InRule.Repository" />

 <section name="inrule.repository"

type="InRule.Repository.Configuration.RepositoryConfigSectionHandler,

InRule.Repository" />

 <section name="inrule.runtime"

type="InRule.Runtime.Configuration.RuntimeConfigSectionHandler, InRule.Runtime" />

 <section name="inrule.runtime.service"

type="InRule.Runtime.Service.Configuration.RuntimeServiceConfigSectionHandler,

InRule.Runtime.Service" />

 <section name="configBuilders"

type="System.Configuration.ConfigurationBuildersSection, System.Configuration,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"

restartOnExternalChanges="false"

requirePermission="false" />

 </configSections>

 <configBuilders>

 <builders>

 <add name="Environment"

mode="Greedy"

name="inrule:runtime:overrides"

type="Microsoft.Configuration.ConfigurationBuilders.EnvironmentConfigBuilder,

Microsoft.Configuration.ConfigurationBuilders.Environment, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

 </builders>

 </configBuilders>

 <appSettings configBuilders="Environment">

 </appSettings>

4.6 Performance Logging and Monitoring

InRule provides the ability to analyze performance and other execution statistics with the following
tools:

Event Log Details

Performance Statistics Report

Rule Tracing

4.6.1 Event Log Details

Date of Publication: 3/22/2021

Application Integration with InRule 51

Overview

When InRule is installed (or modified using the License Activation Utility) event logging can be set up
to use either the Windows Application Event Log or an InRule Event Log source (the default is to use
the InRule Event Log). InRule then uses either Event Log to record detailed application event
information. This logging is performed any time irSDK is utilized, including the InRule products such
as irAuthor, the Catalog Service and the Rule Engine Service. The default logging is set up to log
Errors and Warnings, however, Info level logging can be configured for additional detail. For more
information on how to fully configure Logging, see InRule Logging.

InRule Event Log Types

Runtime Events

Repository Events

4.6.1.1 Runtime Event Log Details

InRule.Runtime Event Log Details

The following 3 logging levels are available for InRule.Runtime:

Error

Warn

Info

The default logging is set up to log Errors and Warnings only.

Below is an example of an InRule.Runtime "Info" level event log entry in the Windows Event Viewer.

Date of Publication: 3/22/2021

InRule Developer Help52

4.6.1.1.1 Runtime Error Level Logging

InRule.Runtime Error Level Logging

Type Name Description

 Runtime error

Message Error description

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the
application domain
associated with the
running instance of
InRule

Date of Publication: 3/22/2021

Application Integration with InRule 53

Note: this value is
intermittently logged

Processor Count Number of processors/
cores

CLR Version Runtime version

CLR Mode 32 or 64 bits

Thread Culture

ThreadId Managed identification
numbers for the thread
that wrote the log
entry

Error Information Greater detail about
the warning or
exception

4.6.1.1.2 Runtime Warn Level Logging

InRule.Runtime Warn Level Logging

Type Name Description

Runtime warning

Message Warning description

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the
application domain
associated with the
running instance of
InRule

Note: this value is
intermittently logged

Processor Count Number of processors/
cores

CLR Version Runtime version

CLR Mode 32 or 64 bits

Thread Culture

ThreadId Managed identification
numbers for the thread
that wrote the log
entry

Error Information Greater detail about
the warning or
exception

Date of Publication: 3/22/2021

InRule Developer Help54

4.6.1.1.3 Runtime Info Level Logging

InRule.Runtime Info Level Logging

The following event types are included in Info level logging:

Compile

Create Entity

Apply Rules

Execute Rule Set

4.6.1.1.3.1 Compile Event

InRule.Runtime Info Level Logging - Compile Event

Note: Some of the log detail items are optional and will not be present in every log entry.

Type Name Description

RuleApplication
Compile

Time The date and time of
the event

Source The source of the event
within InRule.Runtime
(e.g.
"CompiledRuleApplicati
on")

Message The type of the event
(e.g. "RuleApplication
Compile")

Is Background Compilation Boolean value
indicating if the
compilation occurred
on the main thread
(false) or on the
background thread
(true)

MetadataCompileTime Elapsed time to
validate rule application
definition and generate
fully resolved runtime
meta model

CatalogTotalClientCallTime Elapsed time to
complete both the
Metadata compilation
and the rule application
download
(MetadataCompileTime
+

Date of Publication: 3/22/2021

Application Integration with InRule 55

CatalogRuleApplication
DownloadTime)

CatalogRuleApplicationVersionCheckTime Elapsed time to poll the
Catalog to check if
there is a newer
version of the rule
application

CatalogRuleApplicationDownloadTime Elapsed time to
download the new
version of the rule
application from the
Catalog

RunningTotalAllTime Elapsed time to
complete the Metadata
compilation
(MetadataCompileTime
)

SessionId GUID representing a
unique RuleSession

RuleApplication Name of the rule
application, and
associated revision
number. A revision
number of "-1"
indicates a file based
rule application where
revision number is not
applicable.

MaxRuleApplicationCacheDepth Maximum rule apps
that will remain cached
before rule apps are
removed

CurrentRuleApplicationCacheDepth Current number of rule
apps in the cache

CurrentDataQueryCacheDepth Current number of
cached queries in the
AppDomain

RuleApplicationCacheUptime Amount of time since
rule application cache
was created

ProcessUptime Amount of time InRule
has been up in the
current AppDomain

ThreadId Managed identification
numbers for the thread
that wrote the log entry

ProcessId Identification number
for the process hosting
the rules engine

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the

Date of Publication: 3/22/2021

InRule Developer Help56

application domain
associated with the
running instance of
InRule

Note: This value is
intermittently logged

4.6.1.1.3.2 Create Entity Event

InRule.Runtime Info Level Logging - Create Entity Event

Note: Some of the log detail items are optional and will not be present in every log entry.

Type Name Description

RuleSession.Create
Entity

Time The date and time of
the event

Source The source of the event
within InRule.Runtime
(e.g. "RuleSession")

Message The type of the event
(e.g.
"RuleSession.CreateEnt
ity")

CreateEntityTime Elapsed time to create
the entity

RunningTotalAllTime Elapsed time to
complete the entity
creation
(CreateEntityTime)

SessionId GUID representing a
unique RuleSession

RuleApplication Name of the rule
application, and
associated revision
number. A revision
number of "-1"
indicates a file based
rule application where
revision number is not
applicable.

MaxRuleApplicationCacheDepth Maximum rule apps
that will remain cached
before rule apps are
removed

CurrentRuleApplicationCacheDepth Current number of rule
apps in the cache

CurrentDataQueryCacheDepth Current number of
cached queries in the
AppDomain

Date of Publication: 3/22/2021

Application Integration with InRule 57

RuleApplicationCacheUptime Amount of time since
rule application cache
was created

ProcessUptime Amount of time InRule
has been up in the
current AppDomain

ThreadId Managed identification
numbers for the thread
that wrote the log entry

ProcessId Identification number
for the process hosting
the rules engine

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the
application domain
associated with the
running instance of
InRule

Note: This value is
intermittently logged

4.6.1.1.3.3 Apply Rules Event

InRule.Runtime Info Level Logging - Apply Rules Event

Note: Some of the log detail items are optional and will not be present in every log entry.

Type Name Description

RuleSession.Appl
yRules

Time The date and time of
the event

Source The source of the event
within InRule.Runtime
(e.g. "RuleSession")

Message The type of the event
(e.g.
"RuleSession.ApplyRule
s")

FunctionCompileTime Elapsed time to
generate and compile
IL execution delegates
invoked by the rule
engine.

Date of Publication: 3/22/2021

InRule Developer Help58

LoadEntityXMLTime Elapsed time to load
entities from Xml.

Note: Only logged
when Xml is used to set
the state of the rule
application entities

RuleExecutionTime Elapsed time to run the
rules. This includes any
FunctionCompileTime,
BoundStateRefreshTim
e,
ExternalMethodCallTim
e and
ExternalSqlQueryCallTi
me.

BoundStateRefreshTime Elapsed time to refresh
state from bound object

Note: Only logged
when bound to a .NET
assembly

ExternalMethodCallTime Elapsed time to execute
User Defined Functions
(UDFs) or external .NET
function library
methods. The number
to the right of the
elapsed time is the
number of methods
called.

ExternalSqlQueryCallTime Elapsed time to execute
SQL queries against
external data sources.
The number to the right
of the elapsed time
indicates the number of
queries executed.

RunningTotalAllTime Total elapsed time
including compilation,
entity creation and
execution

SessionId GUID representing a
unique RuleSession

RuleApplication Name of the rule
application, and
associated revision
number. A revision
number of "-1"
indicates a file based
rule application where
revision number is not
applicable.

MaxRuleApplicationCacheDepth Maximum rule apps
that will remain cached
before rule apps are
removed

CurrentRuleApplicationCacheDepth Current number of rule
apps in the cache

Date of Publication: 3/22/2021

Application Integration with InRule 59

CurrentDataQueryCacheDepth Current number of
cached queries in the
AppDomain

RuleApplicationCacheUptime Amount of time since
rule application cache
was created

ProcessUptime Amount of time InRule
has been up in the
current AppDomain

ThreadId Managed identification
numbers for the thread
that wrote the log entry

ProcessId Identification number
for the process hosting
the rules engine

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the
application domain
associated with the
running instance of
InRule

Note: This value is
intermittently logged

4.6.1.1.3.4 Execute Rule Set Event

InRule.Runtime Info Level Logging - Execute Rule Set Event

Note: Some of the log detail items are optional and will not be present in every log entry.

Type Name Description

RuleSession.ExecuteR
uleSet

Time The date and time of
the event

Source The source of the event
within InRule.Runtime
(e.g. "RuleSession")

Message The type of the event
(e.g.
"RuleSession.ExecuteRu
leSet") This event type
will include the name of
the rule set executed.

FunctionCompileTime Elapsed time to
generate and compile

Date of Publication: 3/22/2021

InRule Developer Help60

IL execution delegates
invoked by the rule
engine.

LoadEntityXMLTime Elapsed time to load
entities from Xml.

Note: Only logged
when Xml is used to set
the state of the rule
application entities

RuleExecutionTime Elapsed time to run the
rules. This includes any
FunctionCompileTime,
BoundStateRefreshTime
,
ExternalMethodCallTime
and
ExternalSqlQueryCallTi
me.

BoundStateRefreshTime Elapsed time to refresh
state from bound object

Note: Only logged
when bound to a .NET
assembly

ExternalMethodCallTime Elapsed time to execute
User Defined Functions
(UDFs) or external .NET
function library
methods. The number
to the right of the
elapsed time is the
number of methods
called.

ExternalSqlQueryCallTime Elapsed time to execute
SQL queries against
external data sources.
The number to the right
of the elapsed time
indicates the number of
queries executed.

RunningTotalAllTime Total elapsed time
including compilation,
entity creation and
execution

SessionId GUID representing a
unique RuleSession

RuleApplication Name of the rule
application, and
associated revision
number. A revision
number of "-1"
indicates a file based
rule application where
revision number is not
applicable.

MaxRuleApplicationCacheDepth Maximum rule apps that
will remain cached
before rule apps are

Date of Publication: 3/22/2021

Application Integration with InRule 61

removed

CurrentRuleApplicationCacheDepth Current number of rule
apps in the cache

CurrentDataQueryCacheDepth Current number of
cached queries in the
AppDomain

RuleApplicationCacheUptime Amount of time since
rule application cache
was created

ProcessUptime Amount of time InRule
has been up in the
current AppDomain

ThreadId Managed identification
numbers for the thread
that wrote the log entry

ProcessId Identification number
for the process hosting
the rules engine

Installer Version Version of the installer
used to install InRule

irSDK Version Version of the InRule
SDK

HostAppDomainHeapMemoryMB Current heap memory
usage for the
application domain
associated with the
running instance of
InRule

Note: This value is
intermittently logged

4.6.1.2 Repository Event Log Details

InRule.Repository Warn Level Logging

Type Name Description

Repository warning

Message Warning description

ThreadId Thread ID where the rule
engine process is running

HostAppDomainHeapMemoryMB Amount of heap memory
used by the host application
in MB

Error Information Exception details

InRule.Repository Info Level Logging

Type Name Description

GetRuleAppSummar

y
RepositoryServiceClientAggExecStats.St
artTimeStamp

Date of Publication: 3/22/2021

InRule Developer Help62

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

GetDefsForRuleApp

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

CreateRuleApplicati

on

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

UndoRuleAppCheck
out

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

Date of Publication: 3/22/2021

Application Integration with InRule 63

GetCheckoutSets

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime:

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

CheckoutRuleApplic
ation

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

GetStaleDefsForRul
eApp

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

HostAppDomainHeapMemoryMB

CheckIn

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

Date of Publication: 3/22/2021

InRule Developer Help64

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

GetLatestRuleAppRe
vision

RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

CheckoutDef RepositoryServiceClientAggExecStats.St
artTimeStamp

RepositoryServiceClientAggExecStats.G
etTime

RepositoryServiceClientAggExecStats.Ot
herServiceCallTime

RepositoryServiceClientAggExecStats.G
etInfoTime

RepositoryServiceClientAggExecStats.D
efSerializationTime

ThreadId

RepositoryServiceClientAggExecStats.Ru
nningTotalAll

4.6.2 Performance Statistics Report

Overview

The performance detail report provides detailed execution information that can assist in the
performance analysis of a rule application. Statistics are captured for the following levels of the rule
application:

Rule application

RuleSets

Rules

Actions

Calculations

Data Operations

Date of Publication: 3/22/2021

Application Integration with InRule 65

Information captured:

Execution times (Total and Mean)

Number of Executions, Cycles and Rule Evaluations

Availability

The report is accessible in irVerify by clicking the Performance Statistics button or via the SDK as
shown in the Source Code Sample "Retrieve the Performance Statistics Report."

4.7 irServer - Rule Execution Service

.NET applications or third-party software products (e.g. BPM products) can call the Rules Engine via
the Rule Execution Service without needing to reference irSDK.
The Rule Execution Service currently supports the REST and SOAP protocols.

See also InRule Runtime Service Config File Settings section for information on storing irCatalog
credentials for use by irServer's REST endpoint, and configuring Endpoint Overrides in the config file.

The following topics are provided for assistance with the setup, configuration, and use of the Rule
Execution Service:

Accessing the Rule Execution Service via SOAP

Adding a Service Reference in Visual Studio

Calling irServer SOAP endpoint using a Service Reference

Date of Publication: 3/22/2021

InRule Developer Help66

Executing a Decision on irServer SOAP endpoint using a Service Reference

Configuring irServer SOAP Endpoint to support WsHttpBinding

Handling irServer SOAP Endpoint Error Conditions

Caching Behavior

Accessing the Rule Execution Service via REST

Methods

o Apply Rules Sample Request and Response Formats

o Execute Decision Sample Request and Response Formats

o Execute Independent RuleSet Sample Request and Response Formats

o Execute RuleSet Sample Request and Response Formats

HTTP Request Member Definitions

o RuleApp

RepositoryRuleAppRevisionSpec

o RuleEngineServiceOptions

o RuleEngineServiceOutputTypes

Overriding RuleApp Endpoints at Runtime

o Database Connection String

o Mail Server Connection

o Web Service Address

o Web Service WSDL Uri

o XML Document Path

o XML Schema

o XML Schema Validation

o Inline Table

o Inline XML Document

o Inline Value List

o SQL Query

o REST Service X.509 Certificate Path

o REST Service Authentication Type

o REST Service Root Url

4.7.1 Accessing via SOAP

The following topics and samples are provided for assistance with the use of the SOAP Endpoint:

Adding a Service Reference in Visual Studio

Calling irServer SOAP endpoint using a Service Reference

Executing a Decision on irServer SOAP endpoint using a Service Reference

Configuring irServer SOAP Endpoint to support WsHttpBinding

Handling irServer SOAP Endpoint Error Conditions

Caching Behavior

Date of Publication: 3/22/2021

Application Integration with InRule 67

4.7.1.1 Adding a Service Reference in Visual Studio

To configure a Service Reference, do the following:

1. Right click on the References folder in the project. From the menu select Add Service
Reference.

2. You will be prompted with the Add Service Reference dialog. Enter the URL of the InRule
Rule Service (e.g. http://server/InRuleRuleEngineService/service.svc)

Date of Publication: 3/22/2021

InRule Developer Help68

3. Change the Namespace field to something descriptive such as RuleEngineService.

4. Click OK button. This will add the Service Reference to your project.

5. Follow the code sample to Calling irServer SOAP Endpoint using a Service Reference.

4.7.1.2 Calling irServer SOAP Endpoint using a Service Reference

Prerequisites: A valid Service Reference
See Also: irServer - Rule Execution Service

The following sample represents how to call irServer Rule Execution Service using a service
reference:

using (RuleEngineServiceClient proxy = new RuleEngineServiceClient())

{

try

{

// Get RuleApp as defined in the config (RepositoryRuleApp or

FileSystemRuleApp)

RepositoryRuleApp rules = new RepositoryRuleApp();

rules.RepositoryServiceUri = "http://server/InRuleCatalogService/

Service.svc";

RepositoryRuleAppRevisionSpec spec = new

Date of Publication: 3/22/2021

Application Integration with InRule 69

RepositoryRuleAppRevisionSpec();

spec.RuleApplicationName = "MortgageCalculator";

rules.RepositoryRuleAppRevisionSpec = spec;

rules.UserName = "Admin";

rules.Password = "password";

// Create new ApplyRulesRequest

ApplyRulesRequest request = new ApplyRulesRequest();

request.RuleApp = rules;

request.EntityName = "Mortgage";

request.RuleEngineServiceOutputTypes = new

RuleEngineServiceOutputTypes();

request.RuleEngineServiceOutputTypes.ActiveNotifications = true;

request.RuleEngineServiceOutputTypes.ActiveValidations = true;

request.RuleEngineServiceOutputTypes.EntityState = true;

// Load state XML

Console.WriteLine("- Loading XML state for 'Invoice'...");

request.EntityState = "<Mortgage><LoanInfo><Principal>500000</

Principal><APR>6.875</APR>< TermInYears > 30 </TermInYears ></LoanInfo

><PaymentSummary/ ></Mortgage > ";

Console.WriteLine("Input State:");

Console.WriteLine(request.EntityState);

Console.WriteLine("");

// Submit Request

Console.WriteLine("- Calling ApplyRules() from RuleEngineService...");

RuleEngineServiceResponse response =

proxy.ExecuteRuleEngineRequest(request);

Console.WriteLine("Active Notifications:");

foreach (Notification notification in response.ActiveNotifications)

{

Console.WriteLine(notification.NotificationType + ": " +

notification.Message);

}

Console.WriteLine("");

Console.WriteLine("Active Validations:");

foreach (Validation validation in response.ActiveValidations)

{

Console.WriteLine(validation.InvalidMessageText);

}

Console.WriteLine("");

Console.WriteLine("Output State:");

// Note: XML formatting not maintained in response

Console.WriteLine(response.EntityState);

Console.WriteLine("");

}

catch (Exception ex)

{

Console.WriteLine("Unknown exception occurred during RuleEngineService

request: " + ex.ToString());

Date of Publication: 3/22/2021

InRule Developer Help70

}

}

Console.WriteLine("[END ServiceReferenceConsumer Sample]");

4.7.1.3 Executing a Decision on irServer SOAP endpoint using a Service Reference

Prerequisites: A valid Service Reference
See Also: irServer - Rule Execution Service

The following sample represents how to execute a Decision on irServer Rule Execution Service using
a service reference:

using (RuleEngineServiceClient proxy = new RuleEngineServiceClient())

{

// Get RuleApp as defined in the config (RepositoryRuleApp or

FileSystemRuleApp)

RepositoryRuleApp ruleApp = new RepositoryRuleApp

{

RepositoryServiceUri = "http://localhost/InRuleCatalogService/

Service.svc",

RepositoryRuleAppRevisionSpec = new RepositoryRuleAppRevisionSpec

{ RuleApplicationName = "AreaCalculator" },

UserName = "Admin",

Password = "password"

};

// Create new ExecuteDecisionRequest

ExecuteDecisionRequest request = new ExecuteDecisionRequest

{

RuleApp = ruleApp,

DecisionName = "CalculateArea",

InputState = "{\"Height\":50,\"Width\":3}", // Note: Decisions only

accept JSON input

RuleEngineServiceOutputTypes = new RuleEngineServiceOutputTypes

{

ActiveNotifications = true,

ActiveValidations = true

}

};

try

{

// Submit request

Console.WriteLine("- Calling ExecuteDecition on RuleEngineService...");

ExecuteDecisionResponse response = (ExecuteDecisionResponse)

proxy.ExecuteRuleEngineRequest(request);

Console.WriteLine("Active Notifications:");

foreach (Notification notification in response.ActiveNotifications)

{

Console.WriteLine($"[{notification.NotificationType}]:

{notification.Message}");

Date of Publication: 3/22/2021

Application Integration with InRule 71

}

Console.WriteLine("");

Console.WriteLine("Active Validations:");

foreach (Validation validation in response.ActiveValidations)

{

Console.WriteLine(validation.InvalidMessageText);

}

Console.WriteLine("");

// Note: Decisions only support the output of JSON, not XML

Console.WriteLine("Decision Output:");

Console.WriteLine(response.OutputState);

Console.WriteLine("");

}

catch (Exception ex)

{

Console.WriteLine($"Unknown exception occurred during RuleEngineService

request: {ex}");

}

}

Console.WriteLine("[END ExecuteDecisionServiceReferenceConsumer Sample]");

4.7.1.4 Configuring irServer SOAP Endpoint to Support WsHttpBinding

Bindings for irServer are driven by the configuration file. Therefore, to provide support for
WsHttpBinding one simply needs to modify the service configuration file (web.config in the case of
IIS hosted service or InRuleRuntimeService.config in the case of Windows Service) and the client
configuration file (in the case of a .NET client).

Refer to .NET Framework documentation for further information about application settings, which can
be found at http://msdn.microsoft.com/en-us/library/ms731734.aspx.

Note: When running the Rule Engine Service hosted under IIS, you can only configure one protocol
in the web.config file. This does not apply if the Rule Engine service runs as a Windows Service.

Service Configuration Snippet

<system.serviceModel>

<behaviors>

 <serviceBehaviors>

<behavior name="Behavior_IRuleEngineService">

 <serviceDebug httpHelpPageEnabled="true" />

 <serviceMetadata httpGetEnabled="true" />

</behavior>

 </serviceBehaviors>

</behaviors>

<bindings>

 <wsHttpBinding>

<binding name="WsHttpBinding_IRuleEngineService"

maxReceivedMessageSize="2147483647">

 <readerQuotas maxStringContentLength="2147483647"

maxArrayLength="2147483647" />

 <security mode="None" />

</binding>

 </wsHttpBinding>

</bindings>

<services>

http://msdn.microsoft.com/en-us/library/ms731734.aspx

Date of Publication: 3/22/2021

InRule Developer Help72

 <service name="InRule.Runtime.Service.RuleEngineService"

behaviorConfiguration="Behavior_IRuleEngineService">

<host>

 <baseAddresses>

<add baseAddress="http://localhost:8083/InRuleRuleEngineService-

WsHttpBinding/Service.svc" />

 </baseAddresses>

</host>

<endpoint address="http://localhost:8083/InRuleRuleEngineService-

WsHttpBinding/Service.svc"

 contract="InRule.Runtime.Service.IRuleEngineService"

 binding="wsHttpBinding"

 bindingConfiguration="WsHttpBinding_IRuleEngineService" />

 </service>

</services>

</system.serviceModel>

Client Configuration Snippet

<system.serviceModel>

<client>

 <endpoint address="http://localhost:8083/InRuleRuleEngineService-

WsHttpBinding/Service.svc"

 contract="InRule.Runtime.Service.IRuleEngineService"

 binding="wsHttpBinding"

 bindingConfiguration="WsHttpBinding_IRuleEngineService">

 </endpoint>

</client>

<bindings>

 <wsHttpBinding>

<binding name="WsHttpBinding_IRuleEngineService"

maxReceivedMessageSize="2147483647">

 <readerQuotas maxStringContentLength="2147483647"

maxArrayLength="2147483647" />

 <security mode="None" />

</binding>

 </wsHttpBinding>

</bindings>

</system.serviceModel>

4.7.1.5 Handling irServer SOAP Endpoint Error Conditions

irServer Rule Execution Service SOAP Endpoint uses different error reporting mechanisms depending
on the type of error encountered on the server.

Normally any error conditions or exceptions encountered on the server are reported to the client via
the WCF Fault mechanism. These will likely occur during RuleApplication compilation or erroneous
state modifications. Runtime errors, however, are generally large in size due to the embedded
RuleExecutionLog, RuleSessionState and AggExecStats; these return to the client as a regular service
response, but the response is flagged as having runtime errors.

When using a ServiceReference proxy client, you should always look for runtime errors. Check the
RuleEngineServiceResponse.HasRuntimeErrors property after each request to determine

whether the attached RuleExecutionLog contains errors.

The following code snippets from the irServer Rule Execution Service Samples illustrate how the
different error conditions can be detected:

http://localhost:8083/InRuleRuleEngineService-WsHttpBinding/Service.svc
http://localhost:8083/InRuleRuleEngineService-WsHttpBinding/Service.svc
http://localhost:8083/InRuleRuleEngineService-WsHttpBinding/Service.svc
http://localhost:8083/InRuleRuleEngineService-WsHttpBinding/Service.svc

Date of Publication: 3/22/2021

Application Integration with InRule 73

Creating an Invalid Entity

try

{

// Ask the RuleEngineService for its associated Repository Service URI

Console.WriteLine("- Requesting RespitoryServiceUri from

RuleEngineService...");

string repositoryServiceUri = proxy.GetRuleRepositoryServiceUri();

if (String.IsNullOrEmpty(repositoryServiceUri))

{

throw (new Exception("RuleEngineService is not configured to use a

specific Repository Service."));

}

// Get RuleApp as defined in the config (RepositoryRuleApp or

FileSystemRuleApp)

RuleApp ruleApp = GetRuleApp(repositoryServiceUri);

// Construct a request that will fail with an Exception

ApplyRulesRequest request = new ApplyRulesRequest();

request.RuleApp = ruleApp;

request.EntityName = "InvalidEntityName123"; // Use an invalid Entity name

request.RuleEngineServiceOutputTypes = new RuleEngineServiceOutputTypes();

request.RuleEngineServiceOutputTypes.ActiveNotifications = true;

request.RuleEngineServiceOutputTypes.ActiveValidations = true;

request.RuleEngineServiceOutputTypes.EntityState = true;

request.EntityState = "<InvalidEntityName123/>";

Console.WriteLine("- Calling ApplyRules() from RuleEngineService...");

Console.WriteLine("");

proxy.ExecuteRuleEngineRequest(request); // This should throw a contracted

Fault

}

catch (FaultException<ServiceFault> contractedFault)

{

Console.WriteLine("Received expected contracted fault:");

Console.WriteLine("Exception Type:" + contractedFault.Detail.QualifiedName);

Console.WriteLine("Exception Message:" + contractedFault.Detail.Message);

}

Handling a Runtime Error

// Get RuleApp designed to fail at Runtime

RuleApp ruleApp = GetDivideByZeroRuleApp();

// Construct a request that will fail *without* throwing an Exception

ApplyRulesRequest request = new ApplyRulesRequest();

request.RuleApp = ruleApp;

request.EntityName = "Entity1"; // Use an invalid Entity name

request.RuleEngineServiceOutputTypes = new RuleEngineServiceOutputTypes();

request.RuleEngineServiceOutputTypes.EntityState = true;

request.EntityState = "<Entity1/>";

Console.WriteLine("- Calling ApplyRules() from RuleEngineService...");

Console.WriteLine("");

Date of Publication: 3/22/2021

InRule Developer Help74

// This should succeed, but the response should have a RuntimeError flag set to

true

RuleEngineServiceResponse response = proxy.ExecuteRuleEngineRequest(request);

if (response.HasRuntimeErrors)

{

// Iterate all the Runtime errors in the Execution Log

foreach (RuleExecutionLogMessage msg in response.RuleExecutionLog.Messages)

{

if (msg is ErrorMessage)

{

ErrorMessage error = (ErrorMessage)msg;

Console.WriteLine("Expected RuntimeError: " + error.Message);

}

}

}

4.7.1.6 Caching Behavior

irServer Rule Execution Service RuleApp Cache Characteristics and Significance

When a rule application is submitted for first time execution, the rule application is compiled and then
cached in the AppDomain. Subsequent requests for the rule application will pull from the AppDomain,
providing faster access to the rule application. To compile the rule application and enable caching it
should be requested appropriately. The compile and caching process is sometimes referred to as the
cold start. See Cold Start Mitigation for techniques to avoid end users experiencing time lags due to
this behavior.

The FileSystemRuleApp, RepositoryRuleApp and InMemoryRuleApp all leverage caching.

Each rule application type will check to see if there have been changes made to the rule application
(or if there is a new revision of the rule application in the case of the RepositoryRuleApp) and will
recompile and cache the rule application if there are changes.

By default, 5 rule applications will be stored in the cache. To modify the cache limit, see Managing
the RuleApp Cache.

Any time the AppDomain shuts down (e.g. IISReset or AppPool settings such as Recycling or
Performance settings), the cache is cleared.

Catalog Specific Caching Behavior

When a rule application is pulled from the Catalog, it is cached on the Rule Execution Service side,
not the Catalog Service.
If the RuleApp is in cache, and within the specified cache timeout, the cached RuleApp is used. The
default cache timeout is 30 seconds. The timeout can be overridden by passing the desired timeout
value into the RepositoryRuleApp constructor.
If the cache has expired, a lightweight check is performed to see if a newer revision of the
RuleApp exists using GetRuleApplicationDef(). If a new revision does not exist, the cached RuleApp
is used.
If the RuleApp is not in the cache, it is pulled from the Catalog.

Requesting irServer Rule Execution Service to use the specific revision of the rule application from
catalog can be performed using the following RepositoryRuleAppRevisionSpec class:

 var spec = new RepositoryRuleAppRevisionSpec { RuleApplicationName = "IrSoaTest",

Date of Publication: 3/22/2021

Application Integration with InRule 75

Label = "", Revision = 1 };
 ruleApp.RepositoryRuleAppRevisionSpec = spec;

InMemory Specific Caching Behavior

To enable caching behavior for InMemoryRuleApp, the following steps are required:

Submitting a request to obtain the caching key will retrieve the key which uniquely identifies
ruleapp on the irServer Rule Execution Service:

 var ruleApp = new InMemoryRuleApp();
 ruleApp.RuleApplicationDef = File.ReadAllText(ruleAppFilename);

 var request = new RuleApplicationInfoRequest();
 request.RuleApp = ruleApp;
 var proxy = new RuleEngineServiceClient();

 var ruleAppInfo = proxy.GetRuleApplicationInfo(request);

 ruleAppInfo.RuleApplicationTrackingKey contains the caching key, which is used for the

subsequent requests.

Submitting a request to execute a rule application using a cached rule application key retrieved in
the prior step will use the cached revision:

 var ruleApp = new InMemoryRuleApp();
 ruleApp.CacheAndRevisionKey = ruleAppInfo.RuleApplicationTrackingKey;
 var request = new ApplyRulesRequest();
 request.RuleApp = ruleApp;

Note: complete ruleapplication xml in each subsequent request is not required for InMemoryRuleApp
as provided caching key directing irServer Rule Execution Service to lookup the cache for the specific
revision.

FileSystem Caching Specific Behavior

When a rule application is pulled from the File System, it is cached on the server. For each request,
file on the disk is checked if it was updated and reloaded if so.
Path to the rule application can be specified using the FilePath property of the FileSystemRuleApp
class:

 var ruleApp = new FileSystemRuleApp();
 ruleApp.FilePath = “filepath”;

4.7.2 Accessing via REST

irServer Rule Execution Service supports use of standard HTTP verbs to execute rules in addition to
the existing SOAP Endpoint support.

The irServer Rule Execution Service uses content negotiation to determine the request and response
types. Note: If not specified, both the request and response types will default to XML.

Request Examples

Date of Publication: 3/22/2021

InRule Developer Help76

Content-Type: application/xml

Content-Type: application/json

Response Examples

Accept: application/xml

Accept: application/json

The following topics and samples are provided for assistance with the use of the REST Endpoint:

Methods

Apply Rules Sample Request and Response Formats

Execute Decision Sample Request and Response Formats

Execute Independent RuleSet Sample Request and Response Formats

Execute RuleSet Sample Request and Response Formats

HTTP Request Member Definitions

RuleApp

o RepositoryRuleAppRevisionSpec

RuleEngineServiceOptions

RuleEngineServiceOutputTypes

Overriding RuleApp Endpoints at Runtime

Database Connection String

Mail Server Connection

Web Service Address

Web Service WSDL Uri

XML Document Path

XML Schema

XML Schema Validation

Inline Table

Inline XML Document

Inline Value List

SQL Query

REST Service X.509 Certificate Path

REST Service Authentication Type

REST Service Root Url

See also InRule Runtime Service Config File Settings section for information on storing irCatalog
credentials in the config file for use by irServer's REST endpoint.

4.7.2.1 Methods

The following topics and samples are provided for assistance with the use of the REST Endpoint
methods:

Apply Rules Sample Request and Response Formats

Execute Decision Sample Request and Response Formats

Execute Independent RuleSet Sample Request and Response Formats

Execute RuleSet Sample Request and Response Formats

Date of Publication: 3/22/2021

Application Integration with InRule 77

4.7.2.1.1 Apply Rules

URL: e.g. http://servername/InRuleRuleEngineService/HttpService.svc/ApplyRules
HTTP
Method
:

POST

See below for examples of requests / responses in both XML and JSON formats. The variations shown
are:

File-based Rule Application (deployed on irServer)

Catalog Rule Application

o Rule Application specified by either Name or Guid

o Revision specified as Latest, Label or Revision

o Authentication using specified Username / Password, Single Sign-On or using irServer config-

specified credentials

Optional RequestId specified

Optional CacheTimeout specified

Optional ConnTimeout specified

Optional Overrides specified

Optional Output Options specified (overriding defaults)

Note: In all XML request examples below, elements must be ordered exactly as specified.

Sample XML Request: Filesystem Rule Application

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <FileName>Ruleapp1.ruleapp</FileName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: Latest Revision by Name

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Date of Publication: 3/22/2021

InRule Developer Help78

Sample XML Request: Catalog Rule Application: Latest Revision by Guid

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Guid>5f11d845-bda1-4f79-ba67-e8cd12d065f7</Guid>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: Labeled Revision by Name

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Label>Label1</Label>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: Specific Revision by Name

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Revision>3</Revision>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

Date of Publication: 3/22/2021

Application Integration with InRule 79

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UseIntegratedSecurity>true</UseIntegratedSecurity>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: irServer config-specified credentials
Authentication

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

<ApplyRulesRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

Date of Publication: 3/22/2021

InRule Developer Help80

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

</ApplyRulesRequest>

Sample JSON Request: Filesystem Rule Application

{

 "RuleApp": {

 "FileName": "Ruleapp1.ruleapp"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Guid

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Guid":"5f11d845-bda1-4f79-ba67-e8cd12d065f7"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}}

Sample JSON Request: Catalog Rule Application: Labeled Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

Date of Publication: 3/22/2021

Application Integration with InRule 81

 "Label":"Label1",

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: Specific Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Revision":3,

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: irServer config-specified credentials
Authentication

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc"

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

Date of Publication: 3/22/2021

InRule Developer Help82

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "EntityName":"Entity1",

 "EntityState":"{\"Field1\":\"1\"}"

}

Sample XML Response

Date of Publication: 3/22/2021

Application Integration with InRule 83

<RuleEngineHttpServiceResponse xmlns="http://www.inrule.com/XmlSchema/Schema">

 <ActiveNotifications>

 <Notification>

 <Changed>true</Changed>

 <ElementId>String content</ElementId>

 <FiredBy>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 </FiredBy>

 <IsActive>true</IsActive>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <Message>String content</Message>

 <NoteUniqueKey>String content</NoteUniqueKey>

 <NotificationType>String content</NotificationType>

 </Notification>

 </ActiveNotifications>

 <ActiveValidations>

 <Validation>

 <ElementIdentifier>String content</ElementIdentifier>

 <InvalidMessageText>String content</InvalidMessageText>

 <IsValid>true</IsValid>

 <Reasons>

 <ValidationReason>

 <FiringRuleId>String content</FiringRuleId>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <MessageText>String content</MessageText>

 <OwningRuleId>String content</OwningRuleId>

 </ValidationReason>

 </Reasons>

 </Validation>

 </ActiveValidations>

 <EntityState>String content</EntityState>

 <HasRuntimeErrors>false</HasRuntimeErrors>

 <Overrides>

 <ConfiguredOverride>

 <Name>String content</Name>

 <OverrideType>DatabaseConnection</OverrideType>

 <Value>String content</Value>

 </ConfiguredOverride>

 </Overrides>

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleExecutionLog>

 <CalcsEvaluatedCount>9223372036854775807</CalcsEvaluatedCount>

 <Messages>

 <!--Valid elements of type: CollectionChangedMessage, ErrorMessage, NotificationChangeMessage, RuleSetActivationChangeMessage, RuleValueChangeMessage, TextFeedbackMessage, ValidationChangeMessage, ValueChangeMessage-->

 <RuleExecutionLogMessage i:type="CollectionChangedMessage" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <Description>String content</Description>

 <ChangeType>Added</ChangeType>

 <CollectionCount>2147483647</CollectionCount>

 <CollectionId>String content</CollectionId>

 <MemberId>String content</MemberId>

 <MemberIndex>2147483647</MemberIndex>

 </RuleExecutionLogMessage>

 </Messages>

 <PerformedIncrementalEvaluation>true</PerformedIncrementalEvaluation>

 <RulesEvaluatedCount>9223372036854775807</RulesEvaluatedCount>

 <RulesEvaluatedTrueCount>9223372036854775807</RulesEvaluatedTrueCount>

 <TotalEvaluationCycles>9223372036854775807</TotalEvaluationCycles>

 <TotalExecutionTime>P428DT10H30M12.3S</TotalExecutionTime>

Date of Publication: 3/22/2021

InRule Developer Help84

 <TotalTraceFrames>2147483647</TotalTraceFrames>

 </RuleExecutionLog>

 <RuleSessionState>String content</RuleSessionState>

 <SessionId>1627aea5-8e0a-4371-9022-9b504344e724</SessionId>

</RuleEngineHttpServiceResponse>

Sample JSON Response

{

 "ActiveNotifications":[{

 "Changed":true,

 "ElementId":"String content",

 "FiredBy":["String content"],

 "IsActive":true,

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "Message":"String content",

 "NoteUniqueKey":"String content",

 "NotificationType":"String content"

 }],

 "ActiveValidations":[{

 "ElementIdentifier":"String content",

 "InvalidMessageText":"String content",

 "IsValid":true,

 "Reasons":[{

 "FiringRuleId":"String content",

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "MessageText":"String content",

 "OwningRuleId":"String content"

 }]

 }],

 "EntityState":"String content",

 "HasRuntimeErrors":false,

 "Overrides":[{

 "Name":"String content",

 "OverrideType":0,

 "Value":"String content"

 }],

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleExecutionLog":{

 "CalcsEvaluatedCount":9223372036854775807,

 "Messages":[{

 "Description":"String content",

 "ChangeType":0,

 "CollectionCount":2147483647,

 "CollectionId":"String content",

 "MemberId":"String content",

 "MemberIndex":2147483647

 }],

 "PerformedIncrementalEvaluation":true,

 "RulesEvaluatedCount":9223372036854775807,

 "RulesEvaluatedTrueCount":9223372036854775807,

 "TotalEvaluationCycles":9223372036854775807,

 "TotalExecutionTime":"P428DT10H30M12.3S",

 "TotalTraceFrames":2147483647

 },

 "RuleSessionState":"String content",

 "SessionId":"1627aea5-8e0a-4371-9022-9b504344e724"

}

Date of Publication: 3/22/2021

Application Integration with InRule 85

4.7.2.1.2 Execute Decision

URL: e.g. http://servername/InRuleRuleEngineService/HttpService.svc/ExecuteDecision
HTTP
Method
:

POST

See below for examples of requests / responses in both XML and JSON formats. The variations shown
are:

File-based Rule Application (deployed on irServer)

Catalog Rule Application

o Rule Application specified by either Name or Guid

o Revision specified as Latest, Label or Revision

o Authentication using specified Username / Password, Single Sign-On or using irServer config-

specified credentials

Optional RequestId specified

Optional CacheTimeout specified

Optional ConnTimeout specified

Optional Overrides specified

Optional Output Options specified (overriding defaults)

Note: In all XML request examples below, elements must be ordered exactly as specified.

Sample XML Request: Filesystem Rule Application

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <FileName>RuleApp1.ruleappx</FileName>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: Latest Revision by Name

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Date of Publication: 3/22/2021

InRule Developer Help86

Sample XML Request: Catalog Rule Application: Latest Revision by Guid

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Guid>5f11d845-bda1-4f79-ba67-e8cd12d065f7</Guid>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: Labeled Revision by Name

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Label>Label1</Label>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: Specific Revision by Name

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Revision>3</Revision>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UseIntegratedSecurity>true</UseIntegratedSecurity>

 <UserName>CatUsername</UserName>

Date of Publication: 3/22/2021

Application Integration with InRule 87

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: irServer config-specified credentials
Authentication

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 </RuleApp>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

<ExecuteDecisionRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>A1E9BB89-7B46-4F62-B9AA-62FB03D73F03</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <DecisionName>CalculateArea</DecisionName>

 <InputState>{ "height": 10, "width": 2 }</InputState>

</ExecuteDecisionRequest>

Sample JSON Request: Filesystem Rule Application

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

Date of Publication: 3/22/2021

InRule Developer Help88

 "RuleApp": {

 "FileName": "RuleApp1.ruleappx"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Name

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

 "UserName": "CatUsername",

 "Password": "CatPassword"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Guid

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

 "Guid": "5f11d845-bda1-4f79-ba67-e8cd12d065f7"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

 "UserName": "CatUsername",

 "Password": "CatPassword"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: Labeled Revision by Name

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

 "Label": "Label1",

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

 "UserName": "CatUsername",

 "Password": "CatPassword"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: Specific Revision by Name

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

Date of Publication: 3/22/2021

Application Integration with InRule 89

 "Revision": 3,

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

 "UserName": "CatUsername",

 "Password": "CatPassword"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

 "UseIntegratedSecurity": true,

 "UserName": "CatUsername"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: irServer config-specified credentials
Authentication

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "RepositoryRuleAppRevisionSpec": {

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc"

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

{

 "RequestId": "A1E9BB89-7B46-4F62-B9AA-62FB03D73F03",

 "RuleApp": {

 "CacheTimeout": 120,

 "ConnTimeout": 100,

 "RepositoryRuleAppRevisionSpec": {

 "Revision": 3,

 "RuleApplicationName": "RuleApp1"

 },

 "RepositoryServiceUri": "http://localhost/InRuleCatalogService/service.svc",

Date of Publication: 3/22/2021

InRule Developer Help90

 "UserName": "CatUsername",

 "UseIntegratedSecurity":true,

 },

 "RuleEngineServiceOptions": {

 "Overrides": [

 // see Overrides for example.

],

 "RuleSessionOverrides": {

 "ExecutionTimeout": "PT40S",

 "MaxCycleCount": 200000,

 "Now": "/Date(928167600000-0500)/",

 },

 },

 "RuleEngineServiceOutputTypes": {

 "ActiveNotifications": true,

 "ActiveValidations": true,

 "EntityState": true,

 "Overrides": true,

 "RuleExecutionLog": true

 },

 "DecisionName": "CalculateArea",

 "InputState": "{\"height\":10,\"width\":2}"

}

Sample XML Response

Date of Publication: 3/22/2021

Application Integration with InRule 91

<ExecuteDecisionResponse xmlns="http://www.inrule.com/XmlSchema/Schema">

 <ActiveNotifications>

 <Notification>

 <Changed>true</Changed>

 <ElementId>String content</ElementId>

 <FiredBy>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 </FiredBy>

 <IsActive>true</IsActive>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <Message>String content</Message>

 <NoteUniqueKey>String content</NoteUniqueKey>

 <NotificationType>String content</NotificationType>

 </Notification>

 </ActiveNotifications>

 <ActiveValidations>

 <Validation>

 <ElementIdentifier>String content</ElementIdentifier>

 <InvalidMessageText>String content</InvalidMessageText>

 <IsValid>true</IsValid>

 <Reasons>

 <ValidationReason>

 <FiringRuleId>String content</FiringRuleId>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <MessageText>String content</MessageText>

 <OwningRuleId>String content</OwningRuleId>

 </ValidationReason>

 </Reasons>

 </Validation>

 </ActiveValidations>

 <HasRuntimeErrors>false</HasRuntimeErrors>

 <OutputState>{"area":20}</OutputState>

 <RequestId>a1e9bb89-7b46-4f62-b9aa-62fb03d73f03</RequestId>

 <RuleExecutionLog>

 <CalcsEvaluatedCount>9223372036854775807</CalcsEvaluatedCount>

 <Messages>

 <!--Valid elements of type: CollectionChangedMessage, ErrorMessage, NotificationChangeMessage, RuleSetActivationChangeMessage, RuleValueChangeMessage, TextFeedbackMessage, ValidationChangeMessage, ValueChangeMessage-->

 </Messages>

 <PerformedIncrementalEvaluation>true</PerformedIncrementalEvaluation>

 <RulesEvaluatedCount>9223372036854775807</RulesEvaluatedCount>

 <RulesEvaluatedTrueCount>9223372036854775807</RulesEvaluatedTrueCount>

 <TotalEvaluationCycles>9223372036854775807</TotalEvaluationCycles>

 <TotalExecutionTime>P428DT10H30M12.3S</TotalExecutionTime>

 <TotalTraceFrames>2147483647</TotalTraceFrames>

 </RuleExecutionLog>

 <SessionId>1627aea5-8e0a-4371-9022-9b504344e724</SessionId>

</ExecuteDecisionResponse>

Sample JSON Response

Date of Publication: 3/22/2021

InRule Developer Help92

{

 "ActiveNotifications": [{

 "Changed": true,

 "ElementId": "String content",

 "FiredBy": ["String content"],

 "IsActive": true,

 "ManagedByRuleEngine": true,

 "MarkedForRemoval": true,

 "Message": "String content",

 "NoteUniqueKey": "String content",

 "NotificationType": "String content"

 }],

 "ActiveValidations":[{

 "ElementIdentifier": "String content",

 "InvalidMessageText": "String content",

 "IsValid": true,

 "Reasons": [{

 "FiringRuleId": "String content",

 "ManagedByRuleEngine": true,

 "MarkedForRemoval": true,

 "MessageText": "String content",

 "OwningRuleId": "String content"

 }]

 }],

 "HasRuntimeErrors": false,

 "OutputState": "{\"area\":20}",

 "RequestId": "a1e9bb89-7b46-4f62-b9aa-62fb03d73f03",

 "RuleExecutionLog": {

 "CalcsEvaluatedCount": 9223372036854775807,

 "Messages": [{

 "Description": "String content",

 "ChangeType": 0,

 "CollectionCount": 2147483647,

 "CollectionId": "String content",

 "MemberId": "String content",

 "MemberIndex": 2147483647

 }],

 "PerformedIncrementalEvaluation": true,

 "RulesEvaluatedCount": 9223372036854775807,

 "RulesEvaluatedTrueCount": 9223372036854775807,

 "TotalEvaluationCycles": 9223372036854775807,

 "TotalExecutionTime": "P428DT10H30M12.3S",

 "TotalTraceFrames": 2147483647

 },

 "SessionId":"1627aea5-8e0a-4371-9022-9b504344e724"

}

4.7.2.1.3 Execute Independent Rule Set

URL: e.g. http://servername/InRuleRuleEngineService/HttpService.svc/
ExecuteIndependentRuleSet

HTTP
Method
:

POST

See below for examples of requests / responses in both XML and JSON formats. The variations shown
are:

File-based Rule Application (deployed on irServer)

Date of Publication: 3/22/2021

Application Integration with InRule 93

Catalog Rule Application

o Rule Application specified by either Name or Guid

o Revision specified as Latest, Label or Revision

o Authentication using specified Username / Password, Single Sign-On or using irServer

configuration-specified credentials (see InRule Runtime Service Config File Settings)

Optional RequestId specified

Optional CacheTimeout specified

Optional ConnTimeout specified

Optional Overrides specified

Optional Output Options specified (overriding defaults)

Note: In all XML request examples below, elements must be ordered exactly as specified.

Sample XML Request: Filesystem Rule Application

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <FileName>Ruleapp1.ruleapp</FileName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: Latest Revision by Name

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: Latest Revision by Guid

Date of Publication: 3/22/2021

InRule Developer Help94

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Guid>5f11d845-bda1-4f79-ba67-e8cd12d065f7</Guid>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: Labeled Revision by Name

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Label>Label1</Label>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: Specific Revision by Name

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Revision>3</Revision>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

Date of Publication: 3/22/2021

Application Integration with InRule 95

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UseIntegratedSecurity>true</UseIntegratedSecurity>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: irServer config-specified credentials
Authentication

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

Date of Publication: 3/22/2021

InRule Developer Help96

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <RuleSetName>Ruleset1</RuleSetName>

 <EntityStateFieldName>Entity1Param</EntityStateFieldName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Rule Set Parameters specified

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <Parameters>

 <Parameter>

 <Name>Parameter1</Name>

 <Value>Value1</Value>

 </Parameter>

 <Parameter>

 <Name>Parameter2</Name>

 <Value>Value2</Value>

 </Parameter>

Date of Publication: 3/22/2021

Application Integration with InRule 97

 </Parameters>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteIndependentRuleSetRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Entity Rule Set Parameters specified

<ExecuteIndependentRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <Parameters>

 <Parameter>

 <Name>Parameter1</Name>

 <Value>Value1</Value>

 </Parameter>

 <Parameter>

 <Name>EntityParameter2</Name>

 <Value><?xml version='1.0' encoding='utf-8'?><Entity2 ><Field1>1</Field1></Entity1></Value>

 </Parameter>

 </Parameters>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteIndependentRuleSetRequest>

Sample JSON Request: Filesystem Rule Application

{

 "RuleApp":{

 "FileName":"Ruleapp1.ruleapp"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Date of Publication: 3/22/2021

InRule Developer Help98

Sample JSON Request: Catalog Rule Application: Latest Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Guid

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Guid":"5f11d845-bda1-4f79-ba67-e8cd12d065f7"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: Labeled Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Label":"Label1",

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: Specific Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Revision":3,

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

Date of Publication: 3/22/2021

Application Integration with InRule 99

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: irServer config-specified credentials
Authentication

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options specified

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

Date of Publication: 3/22/2021

InRule Developer Help100

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "RuleSetName":"Ruleset1",

 "EntityStateFieldName":"Entity1Param"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Rule Set Parameters specified

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "Parameters": [

 {"Name":"Parameter1","Value":"Value1"},

 {"Name":"Parameter2","Value":"Value2"}

],

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Entity Rule Set Parameters specified

Date of Publication: 3/22/2021

Application Integration with InRule 101

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "Parameters": [

 {"Name":"Parameter1","Value":"Value1"},

 {"Name":"EntityParameter2","Value":"{\"Field1\":\"1\"}"}

],

 "RuleSetName":"Ruleset1"

}

Sample XML Response

Date of Publication: 3/22/2021

InRule Developer Help102

<RuleEngineHttpServiceResponse xmlns="http://www.inrule.com/XmlSchema/Schema">

 <ActiveNotifications>

 <Notification>

 <Changed>true</Changed>

 <ElementId>String content</ElementId>

 <FiredBy>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 </FiredBy>

 <IsActive>true</IsActive>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <Message>String content</Message>

 <NoteUniqueKey>String content</NoteUniqueKey>

 <NotificationType>String content</NotificationType>

 </Notification>

 </ActiveNotifications>

 <ActiveValidations>

 <Validation>

 <ElementIdentifier>String content</ElementIdentifier>

 <InvalidMessageText>String content</InvalidMessageText>

 <IsValid>true</IsValid>

 <Reasons>

 <ValidationReason>

 <FiringRuleId>String content</FiringRuleId>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <MessageText>String content</MessageText>

 <OwningRuleId>String content</OwningRuleId>

 </ValidationReason>

 </Reasons>

 </Validation>

 </ActiveValidations>

 <EntityState>String content</EntityState>

 <HasRuntimeErrors>false</HasRuntimeErrors>

 <Overrides>

 <ConfiguredOverride>

 <Name>String content</Name>

 <OverrideType>DatabaseConnection</OverrideType>

 <Value>String content</Value>

 </ConfiguredOverride>

 </Overrides>

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleExecutionLog>

 <CalcsEvaluatedCount>9223372036854775807</CalcsEvaluatedCount>

 <Messages>

 <!--Valid elements of type: CollectionChangedMessage, ErrorMessage, NotificationChangeMessage, RuleSetActivationChangeMessage, RuleValueChangeMessage, TextFeedbackMessage, ValidationChangeMessage, ValueChangeMessage-->

 <RuleExecutionLogMessage i:type="CollectionChangedMessage" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <Description>String content</Description>

 <ChangeType>Added</ChangeType>

 <CollectionCount>2147483647</CollectionCount>

 <CollectionId>String content</CollectionId>

 <MemberId>String content</MemberId>

 <MemberIndex>2147483647</MemberIndex>

 </RuleExecutionLogMessage>

 </Messages>

 <PerformedIncrementalEvaluation>true</PerformedIncrementalEvaluation>

 <RulesEvaluatedCount>9223372036854775807</RulesEvaluatedCount>

 <RulesEvaluatedTrueCount>9223372036854775807</RulesEvaluatedTrueCount>

 <TotalEvaluationCycles>9223372036854775807</TotalEvaluationCycles>

 <TotalExecutionTime>P428DT10H30M12.3S</TotalExecutionTime>

Date of Publication: 3/22/2021

Application Integration with InRule 103

 <TotalTraceFrames>2147483647</TotalTraceFrames>

 </RuleExecutionLog>

 <RuleSessionState>String content</RuleSessionState>

 <SessionId>1627aea5-8e0a-4371-9022-9b504344e724</SessionId>

</RuleEngineHttpServiceResponse>

Sample JSON Response

{

 "ActiveNotifications":[{

 "Changed":true,

 "ElementId":"String content",

 "FiredBy":["String content"],

 "IsActive":true,

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "Message":"String content",

 "NoteUniqueKey":"String content",

 "NotificationType":"String content"

 }],

 "ActiveValidations":[{

 "ElementIdentifier":"String content",

 "InvalidMessageText":"String content",

 "IsValid":true,

 "Reasons":[{

 "FiringRuleId":"String content",

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "MessageText":"String content",

 "OwningRuleId":"String content"

 }]

 }],

 "EntityState":"String content",

 "HasRuntimeErrors":false,

 "Overrides":[{

 "Name":"String content",

 "OverrideType":0,

 "Value":"String content"

 }],

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleExecutionLog":{

 "CalcsEvaluatedCount":9223372036854775807,

 "Messages":[{

 "Description":"String content",

 "ChangeType":0,

 "CollectionCount":2147483647,

 "CollectionId":"String content",

 "MemberId":"String content",

 "MemberIndex":2147483647

 }],

 "PerformedIncrementalEvaluation":true,

 "RulesEvaluatedCount":9223372036854775807,

 "RulesEvaluatedTrueCount":9223372036854775807,

 "TotalEvaluationCycles":9223372036854775807,

 "TotalExecutionTime":"P428DT10H30M12.3S",

 "TotalTraceFrames":2147483647

 },

 "RuleSessionState":"String content",

 "SessionId":"1627aea5-8e0a-4371-9022-9b504344e724"

}

Date of Publication: 3/22/2021

InRule Developer Help104

4.7.2.1.4 Execute Rule Set

URL: e.g. http://servername/InRuleRuleEngineService/HttpService.svc/ExecuteRuleSet
HTTP
Method
:

POST

See below for examples of requests / responses in both XML and JSON formats. The variations shown
are:

File-based Rule Application (deployed on irServer)

Catalog Rule Application

o Rule Application specified by either Name or Guid

o Revision specified as Latest, Label or Revision

o Authentication using specified Username / Password, Single Sign-On or using irServer config-

specified credentials

Optional RequestId specified

Optional CacheTimeout specified

Optional ConnTimeout specified

Optional Overrides specified

Optional Output Options specified (overriding defaults)

Optional Rule Set Parameters specified

Note: In all XML request examples below, elements must be ordered exactly as specified.

Sample XML Request: Filesystem Rule Application

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <FileName>Ruleapp1.ruleapp</FileName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: Latest Revision by Name

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Date of Publication: 3/22/2021

Application Integration with InRule 105

Sample XML Request: Catalog Rule Application: Latest Revision by Guid

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Guid>5f11d845-bda1-4f79-ba67-e8cd12d065f7</Guid>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: Labeled Revision by Name

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Label>Label1</Label>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: Specific Revision by Name

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <Revision>3</Revision>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

Date of Publication: 3/22/2021

InRule Developer Help106

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UseIntegratedSecurity>true</UseIntegratedSecurity>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: irServer config-specified credentials
Authentication

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RuleApp>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 </RuleApp>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Rule Set Parameters specified

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

Date of Publication: 3/22/2021

Application Integration with InRule 107

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <Parameters>

 <Parameter>

 <Name>Parameter1</Name>

 <Value>Value1</Value>

 </Parameter>

 <Parameter>

 <Name>Parameter2</Name>

 <Value>Value2</Value>

 </Parameter>

 </Parameters>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample XML Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Entity Rule Set Parameters specified

<ExecuteRuleSetRequest xmlns="http://www.inrule.com/XmlSchema/Schema">

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleApp>

 <CacheTimeout>100</CacheTimeout>

 <ConnTimeout>120</ConnTimeout>

 <Password>CatPassword</Password>

 <RepositoryRuleAppRevisionSpec>

 <RuleApplicationName>RuleApp1</RuleApplicationName>

 </RepositoryRuleAppRevisionSpec>

 <RepositoryServiceUri>http://localhost/InRuleCatalogService/service.svc</RepositoryServiceUri>

 <UserName>CatUsername</UserName>

 </RuleApp>

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <!-- see Overrides for examples -->

 </Override>

 </Overrides>

 <RuleSessionOverrides>

 <ExecutionTimeout>PT40S</ExecutionTimeout>

 <MaxCycleCount>200000</MaxCycleCount>

Date of Publication: 3/22/2021

InRule Developer Help108

 <Now>1999-05-31T11:20:00</Now>

 </RuleSessionOverrides>

 </RuleEngineServiceOptions>

 <RuleEngineServiceOutputTypes>

 <ActiveNotifications>true</ActiveNotifications>

 <ActiveValidations>true</ActiveValidations>

 <EntityState>true</EntityState>

 <Overrides>true</Overrides>

 <RuleExecutionLog>true</RuleExecutionLog>

 </RuleEngineServiceOutputTypes>

 <EntityState><?xml version='1.0' encoding='utf-8'?><Entity1 ><Field1>1</Field1></Entity1></EntityState>

 <EntityName>Entity1</EntityName>

 <Parameters>

 <Parameter>

 <Name>Parameter1</Name>

 <Value>Value1</Value>

 </Parameter>

 <Parameter>

 <Name>EntityParameter2</Name>

 <Value><?xml version='1.0' encoding='utf-8'?><Entity2 ><Field1>1</Field1></Entity1></Value>

 </Parameter>

 </Parameters>

 <RuleSetName>Ruleset1</RuleSetName>

</ExecuteRuleSetRequest>

Sample JSON Request: Filesystem Rule Application

{

 "RuleApp":{

 "FileName":"Ruleapp1.ruleapp"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: Latest Revision by Guid

Date of Publication: 3/22/2021

Application Integration with InRule 109

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Guid":"5f11d845-bda1-4f79-ba67-e8cd12d065f7"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: Labeled Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Label":"Label1",

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: Specific Revision by Name

{

 "RuleApp":{

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "Revision":3,

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UserName":"CatUsername"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: SSO Authentication (using service host
account credential)

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Date of Publication: 3/22/2021

InRule Developer Help110

Sample JSON Request: Catalog Rule Application: irServer config-specified credentials
Authentication

{

 "RuleApp":{

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc"

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Rule Set Parameters specified

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "Parameters": [

 {"Name":"Parameter1","Value":"Value1"},

 {"Name":"Parameter2","Value":"Value2"}

],

 "RuleSetName":"Ruleset1"

}

Sample JSON Request: Catalog Rule Application: RequestId, CacheTimeout, ConnTimeout,
Overrides, Output Options, Entity Rule Set Parameters specified

Date of Publication: 3/22/2021

Application Integration with InRule 111

{

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleApp":{

 "CacheTimeout":"120",

 "ConnTimeout":"100",

 "Password":"CatPassword",

 "RepositoryRuleAppRevisionSpec":{

 "RuleApplicationName":"Ruleapp1"

 },

 "RepositoryServiceUri":"http:\/\/localhost\/InRuleCatalogService\/service.svc",

 "UseIntegratedSecurity":true,

 "UserName":"CatPassword"

 },

 "RuleEngineServiceOptions":{

 "Overrides":[

 // see Overrides for example.

],

 "RuleSessionOverrides":{

 "ExecutionTimeout":"PT40S",

 "MaxCycleCount":200000,

 "Now":"\/Date(928167600000-0500)\/",

 },

 },

 "RuleEngineServiceOutputTypes":{

 "ActiveNotifications":true,

 "ActiveValidations":true,

 "EntityState":true,

 "Overrides":true,

 "RuleExecutionLog":true

 },

 "EntityState":"{\"Field1\":\"1\"}",

 "EntityName":"Entity1",

 "Parameters": [

 {"Name":"Parameter1","Value":"Value1"},

 {"Name":"EntityParameter2","Value":"{\"Field1\":\"1\"}"}

],

 "RuleSetName":"Ruleset1"

}

Sample XML Response

Date of Publication: 3/22/2021

InRule Developer Help112

<RuleEngineHttpServiceResponse xmlns="http://www.inrule.com/XmlSchema/Schema">

 <ActiveNotifications>

 <Notification>

 <Changed>true</Changed>

 <ElementId>String content</ElementId>

 <FiredBy>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 <string xmlns="http://schemas.microsoft.com/2003/10/Serialization/Arrays">String content</string>

 </FiredBy>

 <IsActive>true</IsActive>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <Message>String content</Message>

 <NoteUniqueKey>String content</NoteUniqueKey>

 <NotificationType>String content</NotificationType>

 </Notification>

 </ActiveNotifications>

 <ActiveValidations>

 <Validation>

 <ElementIdentifier>String content</ElementIdentifier>

 <InvalidMessageText>String content</InvalidMessageText>

 <IsValid>true</IsValid>

 <Reasons>

 <ValidationReason>

 <FiringRuleId>String content</FiringRuleId>

 <ManagedByRuleEngine>true</ManagedByRuleEngine>

 <MarkedForRemoval>true</MarkedForRemoval>

 <MessageText>String content</MessageText>

 <OwningRuleId>String content</OwningRuleId>

 </ValidationReason>

 </Reasons>

 </Validation>

 </ActiveValidations>

 <EntityState>String content</EntityState>

 <HasRuntimeErrors>false</HasRuntimeErrors>

 <Overrides>

 <ConfiguredOverride>

 <Name>String content</Name>

 <OverrideType>DatabaseConnection</OverrideType>

 <Value>String content</Value>

 </ConfiguredOverride>

 </Overrides>

 <RequestId>1627aea5-8e0a-4371-9022-9b504344e724</RequestId>

 <RuleExecutionLog>

 <CalcsEvaluatedCount>9223372036854775807</CalcsEvaluatedCount>

 <Messages>

 <!--Valid elements of type: CollectionChangedMessage, ErrorMessage, NotificationChangeMessage, RuleSetActivationChangeMessage, RuleValueChangeMessage, TextFeedbackMessage, ValidationChangeMessage, ValueChangeMessage-->

 <RuleExecutionLogMessage i:type="CollectionChangedMessage" xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

 <Description>String content</Description>

 <ChangeType>Added</ChangeType>

 <CollectionCount>2147483647</CollectionCount>

 <CollectionId>String content</CollectionId>

 <MemberId>String content</MemberId>

 <MemberIndex>2147483647</MemberIndex>

 </RuleExecutionLogMessage>

 </Messages>

 <PerformedIncrementalEvaluation>true</PerformedIncrementalEvaluation>

 <RulesEvaluatedCount>9223372036854775807</RulesEvaluatedCount>

 <RulesEvaluatedTrueCount>9223372036854775807</RulesEvaluatedTrueCount>

 <TotalEvaluationCycles>9223372036854775807</TotalEvaluationCycles>

 <TotalExecutionTime>P428DT10H30M12.3S</TotalExecutionTime>

Date of Publication: 3/22/2021

Application Integration with InRule 113

 <TotalTraceFrames>2147483647</TotalTraceFrames>

 </RuleExecutionLog>

 <RuleSessionState>String content</RuleSessionState>

 <SessionId>1627aea5-8e0a-4371-9022-9b504344e724</SessionId>

</RuleEngineHttpServiceResponse>

Sample JSON Response

{

 "ActiveNotifications":[{

 "Changed":true,

 "ElementId":"String content",

 "FiredBy":["String content"],

 "IsActive":true,

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "Message":"String content",

 "NoteUniqueKey":"String content",

 "NotificationType":"String content"

 }],

 "ActiveValidations":[{

 "ElementIdentifier":"String content",

 "InvalidMessageText":"String content",

 "IsValid":true,

 "Reasons":[{

 "FiringRuleId":"String content",

 "ManagedByRuleEngine":true,

 "MarkedForRemoval":true,

 "MessageText":"String content",

 "OwningRuleId":"String content"

 }]

 }],

 "EntityState":"String content",

 "HasRuntimeErrors":false,

 "Overrides":[{

 "Name":"String content",

 "OverrideType":0,

 "Value":"String content"

 }],

 "RequestId":"1627aea5-8e0a-4371-9022-9b504344e724",

 "RuleExecutionLog":{

 "CalcsEvaluatedCount":9223372036854775807,

 "Messages":[{

 "Description":"String content",

 "ChangeType":0,

 "CollectionCount":2147483647,

 "CollectionId":"String content",

 "MemberId":"String content",

 "MemberIndex":2147483647

 }],

 "PerformedIncrementalEvaluation":true,

 "RulesEvaluatedCount":9223372036854775807,

 "RulesEvaluatedTrueCount":9223372036854775807,

 "TotalEvaluationCycles":9223372036854775807,

 "TotalExecutionTime":"P428DT10H30M12.3S",

 "TotalTraceFrames":2147483647

 },

 "RuleSessionState":"String content",

 "SessionId":"1627aea5-8e0a-4371-9022-9b504344e724"

}

Date of Publication: 3/22/2021

InRule Developer Help114

4.7.2.2 HTTP Request Member Definitions

Member Elements

Name Description

RequestId

(Guid) A GUID that is sent back with the response that can be
used as a correlation identifier.

RequestId is optional.

RuleApp
Parent element containing information used to load the rule
application from disk or irCatalog.

RuleEngineServiceOptions

Parent element containing override options for Session,
Endpoints and Data Elements.

RuleEngineServiceOptions are optional.

RuleEngineServiceOutputTypes
Parent element defining filters for the outgoing response.

RuleEngineServiceOutputTypes are optional.

EntityState

(string) An encoded XML representation of an entity that rules
are going to be executed against.

EntityState must contain an xml declaration tag:
<?xml version="1.0" encoding="UTF-8" ?>

When encoded inside of JSON, quotes need to be escaped as
double quotes.

When encoded inside of XML, standard XML escaping applies:

Character Replacement

" "

' '

< <

> >

& &

Used by ApplyRules, ExecuteIndependentRuleSet and
ExecuteRuleSet.

EntityName
(string) Name of the XML encoded entity in EntityState.

Used by ApplyRules and ExecuteRuleSet.

RuleSetName
(string) Independent or Entity RuleSet name to execute.

Used by ExecuteIndependentRuleSet and ExecuteRuleSet.

EntityStateFieldName

(string) Name of the entity parameter of the Independent
Rule Set which will be loaded from EntityState.

Note: This property is deprecated after InRule version
5.0.28. Going forward use the Parameters array to
pass in Rule Set Input Parameters.

Used by ExecuteIndependentRuleSet.

Parameters

(Parameter[]) Array of Parameter objects that correlate to
Input Parameters in Rule Sets.

Date of Publication: 3/22/2021

Application Integration with InRule 115

Used by ExecuteIndependentRuleSet and ExecuteRuleSet.

Child Members

RuleApp
RuleEngineServiceOptions
RuleEngineServiceOutputTypes

4.7.2.2.1 Parameter

Member Elements

Name Description

Name The name of the Input Parameter of the Rule Set

Value The value of the Input Parameter of the Rule Set

4.7.2.2.2 RuleApp

Member Elements

Name Description

CacheTimeout

(int) The minimum rule application refresh interval (in
seconds) that specifies when to check the catalog for an
updated revision, if latest revision or label was specified.

Used only for Catalog Rule Applications.

ConnTimeout

(int) The Catalog Service connection timeout (in seconds). If
the timeout expires without a successful connection to
irCatalog, an exception will be thrown. The default is 60
seconds.

Used only for Catalog Rule Applications.

FileName

(string) File name of File System Rule Application. The file
must be located in the configured rule application folder on
the server.

Used only for Catalog Rule Applications.

Password

(string) Password used to authenticate to irCatalog. If
UserName and Password are not provided irServer will use
the username and password provided in the configuration file.

Used only for Catalog Rule Applications.

RepositoryRuleAppRevisionSpe
c

Parent element containing information used to retrieve rule
applications from irCatalog.

Used only for Catalog Rule Applications.

RepositoryServiceUrl

(string) Url to irCatalog. If RepositoryServiceUrl is not
provided, irServer will use the repository url provided in the
configuration file.

Only used for Catalog Rule Applications.

Date of Publication: 3/22/2021

InRule Developer Help116

UseIntegratedSecurity

(boolean) True to have irServer authenticate to irCatalog via
integrated security, otherwise use the provided UserName
and Password.

Used only for Catalog Rule Applications.

UserName

(string) UserName used to authenticate to irCatalog. If
UserName and Password are not provided irServer will use
the username and password provided in the configuration file.

Used only for Catalog Rule Applications.

Child Members

RepositoryRuleAppRevisionSpec

4.7.2.2.2.1 RepositoryRuleAppRevisionSpec

Name Description

Guid

(Guid) The GUID of the Rule Application. If specified, the
value will be used to locate the Rule Application in irCatalog.

If omitted, RuleApplicationName must be specified.

Label

(string) The label of the revision to retrieve. If specified, the
value will be used to locate the Rule Application in irCatalog.

If both Label and Revision are omitted, the latest version of
the rule application will be retrieved.

Revision

(int) The revision number to retrieve. If specified, the value
will be used to locate the Rule Application in irCatalog.

If both Label and Revision are omitted, the latest version of
the rule application will be retrieved.

RuleApplicationName

(string) The name of the Rule Application. If specified, the
value will be used to locate the Rule Application in irCatalog.

If omitted, Guid must be specified.

4.7.2.2.3 RuleEngineServiceOptions

Member Elements

Name Description

Overrides
Parent container for Endpoint and Data Element overrides.

See Overrides for more information.

RuleSessionOverrides
Parent element for Rule Session Overrides. Allows you to
specify overrides for MaxEvaluationCyclesOverride,
ExecutionTimeoutOverride and CurrentDateOverride.

Date of Publication: 3/22/2021

Application Integration with InRule 117

4.7.2.2.4 RuleEngineServiceOutputTypes

Member Elements

Name Description

ActiveNotifications

(boolean) True to return notifications, otherwise notifications
will be omitted from the response.

Defaults to true if not specified.

ActiveValidations

(boolean) True to return validations, otherwise validations will
be omitted from the response.

Defaults to true if not specified.

EntityState

(boolean) True to return entity state, otherwise entity state
will be omitted from the response.

Defaults to true if not specified.

Overrides

(boolean) True to return overrides, otherwise overrides will
be omitted from the response.

Defaults to false if not specified.

RuleExecutionLog

(boolean) True to return the rule execution log, otherwise the
rule execution log will be omitted from the response.

Defaults to false if not specified.

If there are runtime errors encountered during execution, the
rule execution log will always be returned in the response.

4.7.2.3 Overriding RuleApp Endpoints at Runtime

Supported Overrides

Database Connection String

Mail Server Connection

Web Server Address

Web Service WSDL Uri

Web Service MaxReceivedMessageSize

XML Document Path

XML Schema

XML Schema Validation

Inline Table

Inline XML Document

Inline Value List

SQL Query

REST Service X.509 Certificate Path

REST Service Authentication Type

Date of Publication: 3/22/2021

InRule Developer Help118

REST Service Root URL

4.7.2.3.1 Database Connection String

Note: Be sure to specify the ConnectionString override first.

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <ConnectionString>new connection string</ConnectionString>

 <OverrideType>DatabaseConnection</OverrideType>

 <Name>endpoint name</Name>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "ConnectionString":"new connection string",

 "OverrideType":"DatabaseConnection",

 "Name": "endpoint name"

}]

}

}

4.7.2.3.2 Mail Server Connection

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>MailServerConnection</OverrideType>

 <Name>endpoint name</Name>

 <ServerAddress>mail server</ServerAddress>

 </Override>

Date of Publication: 3/22/2021

Application Integration with InRule 119

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"MailServerConnection",

 "Name":"endpoint name",

 "ServerAddress":"mail server"

}]

}

}

4.7.2.3.3 Web Service Address

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>WebServiceAddress</OverrideType>

 <Name>endpoint name</Name>

 <ServiceUriOverride>mail server</ServiceUriOverride>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"WebServiceAddress",

 "Name":"endpoint name",

 "ServiceUriOverride":"mail server"

}]

}

}

4.7.2.3.4 Web Service WSDL Uri

Sample XML

Date of Publication: 3/22/2021

InRule Developer Help120

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>WebServiceWsdlUri</OverrideType>

 <Name>endpoint name</Name>

 <WsdlUri>wsdl uri</WsdlUri>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"WebServiceWsdlUri",

 "Name":"endpoint name",

 "WsdlUri":"wsdl uri"

}]

}

}

4.7.2.3.5 Web Service MaxReceivedMessageSize

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>WebServiceMaxReceivedMessageSize</OverrideType>

 <Name>endpoint name</Name>

 <WebServiceMaxReceivedMessageSize>message size in bytes</WebServiceMaxReceivedMessageSize>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides": [

{

 "OverrideType": "WebServiceMaxReceivedMessageSize",

 "Name": "endpoint name",

 "WebServiceMaxReceivedMessageSize": message size in bytes

}]

}

Date of Publication: 3/22/2021

Application Integration with InRule 121

}

4.7.2.3.6 XML Document Path

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>XmlDocumentPath</OverrideType>

 <Name>endpoint name</Name>

 <XmlPath>xml path</XmlPath>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"XmlDocumentPath",

 "Name":"endpoint name",

 "XmlPath":"xml path"

}]

}

}

4.7.2.3.7 XML Schema

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>XmlSchema</OverrideType>

 <Name>endpoint name</Name>

 <XsdPath>xsd path</XsdPath>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

Date of Publication: 3/22/2021

InRule Developer Help122

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"XmlSchema",

 "Name":"endpoint name",

 "XsdPath":"xsd path"

}]

}

}

4.7.2.3.8 XML Schema Validation

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>XmlSchemaValidation</OverrideType>

 <Name>endpoint name</Name>

 <EnableXsdValidation>true/false</EnableXsdValidation>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"XmlSchemaValidation",

 "Name":"endpoint name",

 "EnableXsdValidation":"true/false"

}]

}

}

4.7.2.3.9 Inline Table

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

Date of Publication: 3/22/2021

Application Integration with InRule 123

 <Override>

 <OverrideType>InlineTable</OverrideType>

 <Name>endpoint name</Name>

 <TableSettings>inline table</TableSettings>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"InlineTable",

 "Name":"endpoint name",

 "TableSettings":"inline table"

}]

}

}

4.7.2.3.10 Inline XML Document

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>InlineXmlDocument</OverrideType>

 <Name>endpoint name</Name>

 <Settings>settings</Settings>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"InlineXmlDocument",

 "Name":"endpoint name",

 "Settings":"settings"

}]

}

}

Date of Publication: 3/22/2021

InRule Developer Help124

4.7.2.3.11 Inline Value List

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>InlineValueList</OverrideType>

 <Name>endpoint name</Name>

 <ValueListItems>

 <ValueListItem>

 <DisplayText>display text</DisplayText>

 <Value>value</Value>

 </ValueListItem>

 </ValueListItems>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"InlineValueList",

 "Name":"endpoint name",

 "ValueListItems":[{

 "DisplayText": "display text",

 "Value": "value"

 }]

 }]

}

}

4.7.2.3.12 SQL Query

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>SqlQuery</OverrideType>

 <Name>endpoint name</Name>

 <Query>query</Query>

 </Override>

Date of Publication: 3/22/2021

Application Integration with InRule 125

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"SqlQuery",

 "Name":"endpoint name",

 "Query":"query"

}]

}

}

4.7.2.3.13 REST Service X.509 Certificate Path

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <OverrideType>RestServiceX509CertificatePath</OverrideType>

 <Name>endpoint name</Name>

 <RestServiceX509CertificatePassword>new connection string</RestServiceX509CertificatePassword>

 <RestServiceX509CertificatePath>new connection string</RestServiceX509CertificatePath>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "OverrideType":"RestServiceX509CertificatePath",

 "Name" : "endpoint name",

 "RestServiceX509CertificatePassword": "certificate password",

 "RestServiceX509CertificatePath": "path to cert"

}]

}

}

Date of Publication: 3/22/2021

InRule Developer Help126

4.7.2.3.14 REST Service Authentication Type

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <AuthenticationType>None/Basic/NTLM/Kerberos/Custom</AuthenticationType>

 <Name>endpoint name</Name>

 <OverrideType>RestServiceAuthenticationType</OverrideType>

 <RestServiceDomain>domain</RestServiceDomain>

 <RestServicePassword>password</RestServicePassword>

 <RestServiceUserName>userName</RestServiceUserName>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "AuthenticationType": "None/Basic/NTLM/Kerberos/Custom",

 "Name": "endpoint name",

 "OverrideType": "RestServiceAuthenticationType",

 "RestServiceDomain": "domain",

 "RestServicePassword": "password",

 "RestServiceUserName": "userName"

}]

}

}

4.7.2.3.15 REST Service Root Url

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <Name>endpoint name</Name>

 <OverrideType>RestServiceRootUrl</OverrideType>

 <RestServiceRootUrl>new url</RestServiceRootUrl>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Date of Publication: 3/22/2021

Application Integration with InRule 127

Sample JSON

{

"RuleEngineServiceOptions":{

 "Overrides":[

{

 "Name": "endpoint name",

 "OverrideType": "RestServiceRootUrl",

 "RestServiceRootUrl": "RestServiceRootUrl"

}]

}

}

4.7.2.3.16 REST Service Allow Untrusted Certificate

Sample XML

<Request>

...

 <RuleEngineServiceOptions>

 <Overrides>

 <Override>

 <Name>endpoint name</Name>

 <OverrideType>RestServiceAllowUntrustedCertificates</OverrideType>
 <AllowUntrustedCertificates>true</AllowUnTrustedCertificates>

 </Override>

 </Overrides>

 ...

 </RuleEngineServiceOptions>

...

</Request>

Sample JSON

{

"RuleEngineServiceOptions":{

"Overrides":[

{

"Name": "endpoint name",

 "OverrideType": "RestServiceAllowUntrustedCertificates",

 "AllowUnTrustedCertificates": "true"

}]

}

}

4.7.2.4 Enabling Web-based help

Enabling Web-based help

The WCF auto-generated help page, with details of the REST execution service, can now be enabled
and made available in the browser via the service URI.
These details include the available operations of the service and help provide confirmation that the
service is installed and responsive.

Date of Publication: 3/22/2021

InRule Developer Help128

To enable the help page for the REST execution service, modify the endpoint behavior in the Rule
Execution Service (Rule Engine Service) configuration file from:

<behavior name="ContentNegotiation">

 <webHttp automaticFormatSelectionEnabled="true" />

</behavior>

to:

<behavior name="ContentNegotiation">

 <webHttp helpEnabled="true" automaticFormatSelectionEnabled="true" />

</behavior>

4.7.2.5 Source Code Examples

The following code samples have been provided for accessing the irServer - Rule Execution Service
via REST.

Sychronously calling the REST Service

Asychronously calling the REST Service with JSON

Asychronously calling the REST Service with XML

4.8 Calling InRule from BizTalk Server

irAdapter for BizTalk Server provides three ways to interact with an InRule installation:

Calling InRule from a BizTalk Orchestration

irAdapter for BizTalk Server

Static .NET methods that may be called from BizTalk Message Assignment shapes

4.8.1 Calling InRule from a BizTalk Orchestration

Here are some suggested configurations for calling InRule from BizTalk.

Calling InRule from within a BizTalk Orchestration using Message Assignment

For low-load scenarios, InRule can be invoked directly from a BizTalk orchestration using the
Message Assignment shape. This approach is not recommended for the following scenarios:

Orchestrations that will experience high sustained loads

Rule applications that have a runtime of greater than 500 ms per request

Calling InRule using a send-receive port and the irAdapter for BizTalk Server

For higher load scenarios, the irAdapter for BizTalk Server can be used with a send-receive port. The
adapter allows for more flexible hosting options to be used with BizTalk that control load

Calling InRule using a send-receive port and a custom BizTalk adpater

In high-load scenarios where specialized calls must be made to irSDK, a custom BizTalk adapter can
be used with a send-receive port. Like the irAdapter, this scenario allows for more flexible hosting
and throttling options with built-in BizTalk configuration settings. Please contact InRule support for

Date of Publication: 3/22/2021

Application Integration with InRule 129

sample code to create a custom BizTalk adapter with irSDK.

Hosting irAdapter and other custom adapters

The suggested configuration for hosting BizTalk adapaters with InRule is as follows:

Host irAdapter or the custom adapter in a separate BizTalk Host instance

Configure the MaxWorkThreads for the separate host instance to either four threads or one
thread per processing core, whichever is greater. Please see the following link for more
information https://msdn.microsoft.com/en-us/library/aa561380.aspx

4.8.2 Using irAdapter for BizTalk Server

Configuring irAdapter in BizTalk

irAdapter for BizTalk Server must first be added to the Adapters list in the BizTalk Server
Administration tool.

1. Launch BizTalk Server Administrator and navigate to the following node:

* BizTalk Server Administration

* BizTalk Group

* Platform Settings

* Adapters

2. Right-click Adapters and select New > Adapter, then name it InRule and choose InRule from
the dropdown list as shown here.

Using irAdapter - Creating and configuring a send port

1. Launch the BizTalk Server Administrative Console.

https://msdn.microsoft.com/en-us/library/aa561380.aspx

Date of Publication: 3/22/2021

InRule Developer Help130

2. Right-click on the BizTalk application’s Send Ports node and select New, then “Static One-
way Send Port” or “Static Solicit-Response Send Port”. The latter is required if a response is
desired from the rule engine; however, scenarios do exist where a response is not required.
Select Solicit-Response if you don’t know which to choose.

3. Name the adapter and select InRule as the transport type:

4. Next, click Configure:

Date of Publication: 3/22/2021

Application Integration with InRule 131

5. Specify the Root Entity Name. This is the entity that will be populated with the XML message
sent to the adapter. For example, if a rule application contained the entities Invoice,
LineItem and Customer, and Invoice was the “top level” entity, “Invoice” would be the
correct value. (The Root Entity Name is typically the same as the root element name in the
XML sent to the adapter.)

6. Set Rule Source to CatalogServer if the rule application will be retrieved from a catalog
server, or File if the rule application will be loaded from disk.

7. If CatalogServer is selected:

a. Set irCatalog Integrated Security to True if the identity of the process hosting the
BizTalk instance should be used to authenticate against the catalog. Otherwise, set it to
False and provide values for irCatalog User Name and irCatalog Password.

b. Set Rule Application Name to the name of the rule application that will be retrieved.

c. Optionally set Rule Application Label to the label of the rule application specified in Rule
Application Name.

d. Set irCatalog URI to the URI of the catalog server. (The URI can be found by running
the Configuration Utility in the InRule start menu group.)

e. Change the values of the irCatalog timeout and/or Cache Timeout. The former is the
connection to the server and the latter specifies the interval at which the adapter will
check for new versions of the rule application on the catalog server. Both of these
numbers should be defined and set to values larger than zero.

8. If File is selected, set Rule Application File Name.

9. If the Rule Application End Points need to be overridden in the given environment, then an
XML string can be provided to define the overrides. In the the case of Database Connections
and Mail Servers, and single Value should be defined for the OverrideEntry. For Web Service

Date of Publication: 3/22/2021

InRule Developer Help132

End Points, at least two Values are required -- one for the service URI and one for the
service WSDL. Web Service End Points also support an optional third Value for the location
of the X509 certificate.

A sample Override Entry String XML that overrides a database and a web service
end point:

<OverrideSettings>

 <OverrideEntries>

 <OverrideEntry>

 <Name>DemoDB</Name>

 <Value>My Connection String</Value>

 </OverrideEntry>

 <OverrideEntry>

 <Name>DemoWebService</Name>

 <Value>http://myservice.mycorp.com/service.svc/method</Value>

 <Value>http://myservice.mycorp.com/service.svc?wsdl</Value>

 </OverrideEntry>

 </OverrideEntries>

</OverrideSettings>

4.8.3 Using the BizTalk Message Assignment Shape

Static methods available to BizTalk expression shapes

The InRule.BizTalk.Orchestration.RuleExecution class contains the following methods that may be
called from a BizTalk Expression: ExecuteRulesFromCatalog and ExecuteRulesFromFile. Both return
an XML document with rule results.

ExecuteRulesFromCatalog - contains the following parameters:

message: The message (single part) or message part containing the XML to be passed to the
rule engine.

outMessage: The message or message part that should contain the updated message.

rootEntityName: The name of the “top level” entity that will be populated with the XML in the
“message” parameter.

ruleApplicationLabel: The optional label for the application.

ruleApplicationName: The application name on the catalog server.

useIntegratedSecurity: Indicates whether integrated security should be used.

username: The user name to use to authenticate to the server.

password: The password to use to authenticate to the server.

catalogUri: The uri of the server.

catalogTimeout: The amount of time, in milliseconds, to wait for the catalog server.

catalogCacheTimeout: The amount of time, in milliseconds, the adapter will cache the
retrieved rule application.

ExecuteRulesFromFile - contains the following parameters:

message: The message (single part) or message part containing the XML to be passed to the
rule engine.

Date of Publication: 3/22/2021

Application Integration with InRule 133

outMessage: The message or message part that should contain the updated message.

rootEntityName: The name of the “top level” entity that will be populated with the XML in the
“message” parameter.

filePath: The file system path to the rule application file. Note that any relative paths will be
relative to the BizTalk installation directory.

4.9 Calling InRule from Windows Workflow Foundation

InRule comes installed with a custom activity for integrating calls to the rule engine from Windows
Workflow applications.

Installing the ApplyRules Windows Workflow Activity in Visual Studio

Configuration of the ApplyRules Windows Workflow Activity

Rule Execution Log Service

4.9.1 Installing the Activity

To install the Apply Rules WF activity in Microsoft Visual Studio:

1. Open a project containing a WF workflow and open the workflow in the workflow designer.

2. Right-click the Toolbox and select “Choose Items…”.

3. Click the Browse button and navigate to the <InRule installation directory>\irSDK\bin folder.

4. Select the InRule.Activities.dll assembly and click Open.

5. Confirm that the ApplyRulesActivity is selected and click OK.

Date of Publication: 3/22/2021

InRule Developer Help134

4.9.2 Configuration of the Activity

The following information details the steps required for configuration of the InRule ApplyRules activity
for Windows Workflow.

Overview

The ApplyRules activity contains three groups of properties:

irCatalog: Those that are required when executing rules retrieved from an irCatalog

File: A filename, required when executing rules from a file-base rule application

Common: Settings required when using either of the above

Date of Publication: 3/22/2021

Application Integration with InRule 135

Figure 1: Apply Rules activity property grid

The Common Group

All of the following properties are required:

Entity Name The name of the entity that will be created.
EntityState The object that the rule engine will execute rules

against. Figure 1 shows a property grid that indicates
that an Invoice entity will be created, and the object
returned by the workflow’s Invoice property will be
used as the entity state.

Note that EntityState is a dependency property, so it’s
easy to select the entity state by clicking the
EntityState cell, then the ellipsis button. Figure 2 shows

Date of Publication: 3/22/2021

InRule Developer Help136

the dependency property binding form.
KeepRuleExecutionLog Indicates whether the rule execution log will be saved

after rule execution ends. If set to true, the log can be
accessed via the LastRuleExecutionLog property on the
activity.

Rule Source This setting indicates whether the rules will be retrieved
from an irCatalog or the file system.

Figure 2: EntityState selection dialog.

The File Group

This property is only required when RuleSource is set to RuleApplicationFile.

Filename The filename of the rule application file (*.ruleapp).

The irCatalog Group

These properties are required when RuleSource is set to irCatalog.

IrCatalogCacheTimeout The number of milliseconds to cache a rule application
retrieve from an irCatalog.

IrCatalogConnectionTimeout The number of milliseconds to wait for a response from
the irCatalog.

IrCatalogIntegratedSecurity Indicates whether integrated security should be used
instead of a username and password.

Date of Publication: 3/22/2021

Application Integration with InRule 137

IrCatalogPassword The password for the irCatalog. Required only when
IrCatalogIntegratedSecurity is false.

IrCatalogUri The URI of the irCatalog.
IrCatalogUsername The username for the irCatalog. Required only when

IrCatalogIntegratedSecurity is false.
RuleApplicationLabel The label of the rule application to retrieve. If a label is

not specified, the latest version is retrieved.
RuleApplicationName The name of the rule application to retrieve. This value

is required.

4.9.3 Rule Execution Log Service

Overview

The Rule Execution Log Service allows application-level access to rule execution logs created during
workflow execution.

At a high level, the process is as follows:

1. A RuleExecutionLogService object is created and populated with the names of the
ApplyRules activities it will monitor.

2. The workflow is executed. Every time an ApplyRules activity is executed, the service checks
to see if it is one that is being monitored. If so, its execution log is saved.

3. After execution, the execution logs can be retrieved from the service and processed.

Creating and Populating the Service

To create and populate the service, simply create a RuleExecutionLogService object and populate its
ActivityNames collection with the names of the activities to monitor. Once all activity names have
been added, add the service to the workflow runtime via its AddService method.

using (WorkflowRuntime workflowRuntime = new WorkflowRuntime())

{

 RuleExecutionLogService logService = new RuleExecutionLogService();

 logService.ActivityNames.Add("applyRules");

 workflowRuntime.AddService(logService);

Retrieving the Execution Logs

The rule execution log(s) may be retrieved during or after workflow execution. First, a reference to
the service is required. This reference may already exist if the service was created in the same
method; otherwise, a reference may be obtained via WorkflowRuntime’s GetService method. Once a
reference has been obtained, a call to the GetExecutionLogs method, with the name of the activity as
an argument, will return a collection of rule execution logs. The collection contains a rule execution
log for every time it was executed during the course of the workflow.

 List<RuleExecutionLog> logs = logService.GetExecutionLogs("applyRules");

 RuleExecutionLog log = logs[0];

 Console.WriteLine("Total execution time: {0:n3} ms",

 log.TotalExecutionTime);

}

Difference between service and ApplyRules activity’s KeepRuleExecutionLog and
LastRuleExecutionLog

The service’s primary function is to serve as a way to access rule execution logs from outside the
context of an executing workflow. The ApplyRules activity’s KeepRuleExecutionLog property specifies
whether the most recent rule execution log will be kept and available via its LastExecutionLog
property, which may then be accessed by anything participating in the workflow. It is in no way
related to the service.

Guidelines are as follows:

Date of Publication: 3/22/2021

InRule Developer Help138

To access a rule execution log from within a workflow, use ApplyRules’
KeepRuleExecutionLog/LastRuleExecutionLog

To access one or more rule execution logs from outside the workflow, use the
RuleExecutionLogService.

4.10 .NET Assembly Object State

This feature allows InRule Entities and Fields to be bound to .NET objects at runtime.

The benefit is that state can be read and written directly from/to objects instead of explicitly setting
individual Field values via irSDK or using JSON/XML serialization mechanisms.

The Rule Application schema may be imported from various sources at design-time (authoring).
When imported from a .NET Assembly, the classes and fields/properties govern the Entity/Field
names and structure of the InRule schema and will attempt synchronize any changes to the
underlying Assembly.

At runtime, the default behavior of the Rule Session will create Entities that are bound to object
instances of the classes imported by the .NET Assembly Schema during authoring.

Differences in Assembly Binding Behavior at Runtime vs Authoring-time

Binding to Collections

.NET Assembly State Refresh Options

4.10.1 Differences in Assembly Binding Behavior at Runtime vs Authoring-time

Authoring

As part of the rule application development process, authors may choose to make use of existing
class libraries and data definitions.

Using a .NET Assembly Schema, classes may be imported as InRule Entities, along with their
associated fields/properties representing InRule Fields, and methods that may be called by rules.

Like any schema type, .NET Assembly Schemas use the associated resource as the source for
binding to a Rule Application’s schema. While the Schema is in place, no design-time modifications to
the Rule Applications’s schema are allowed. Temporary Fields and Collections can still be added for
data that does not need to be exposed outside of the rules.

Runtime

At runtime, any Rule Application that directly executes rules bound to a .NET Assembly Schema will
need to have that .NET Assembly .dll (and any required dependencies) deployed along with it.

Code integrating with irSDK to execute rules will create an instance of an InRule.Runtime.Entity. This
Entity will be bound to an instance of the class that was imported at design-time.

This is the default behavior for InRule schemas bound to .NET Assembly Schemas at design time.

Entities may optionally be bound to arbitrary objects whose fields/properties match the Entity Field/
Collection names (duck typing), regardless of whether the schema was bound to a .NET Assembly
Schema at design-time.

Date of Publication: 3/22/2021

Application Integration with InRule 139

Design Time
Schema

Default Runtime Binding
Behavior

Optional Runtime Binding Behavior

Unbound Unbound Arbitrary object, XElement, Dictionary<string,
object>, ExpandoObject

.NET Assembly
Schema

Bound to classes configured at
design-time

Arbitrary object, XElement, Dictionary<string,
object>, ExpandoObject

Database Schema Unbound Arbitrary object, XElement, Dictionary<string,
object>, ExpandoObject

XML Schema Unbound Arbitrary object, XElement, Dictionary<string,
object>, ExpandoObject

In addition to arbitrary objects, the following .NET Framework types are special-cased when explicitly
passed to irSDK at runtime:

.NET Framework
Type

Notes

XElement Child XElements will map to InRule Fields by name, and the content of each child
XElement will become the Field value.

Dictionary<string,
object>

For each item in the Dictionary, the key must match a Field name of the bound
Entity.
The value of each item should contain a primitive value or object value that
matches the associated Field type.
Even though a Dictionary implements ICollection<T>, it is not treated as an InRule
Collection.

ExpandoObject Behaves similarly to Dictionary where the dynamic property names should match
the InRule Field names.

Examples

Default:

var invoice = session.CreateEntity(“Invoice”);

If an object is not explicitly passed to the CreateEntity() method, an instance of the the class
configured at design-time will be bound to the Entity if the source is a .NET Assembly Schema. For all
other schema types, the Entity will be unbound.

Populated Configured Object:

var invoice = session.CreateEntity(“Invoice”, new Invoice() { InvoiceDate = new
DateTime(2019, 1, 1) });

An instance of the class is populated and explicitly passed to the CreateEntity() method. It does not
matter whether the Invoice class was imported from a .NET Assembly Schema or not. If it was not,
then the object's fields/properties must match the Field names on the Entity.

Arbitrary Object:

var invoice = session.CreateEntity(“Invoice”, new LooksLikeInvoice() { InvoiceDate
= new DateTime(2019, 1, 1) });

An arbitrary object that exhibits the same properties as the Invoice Enitity is explicitly passed to the
CreateEntity() method.

XElement:

Date of Publication: 3/22/2021

InRule Developer Help140

var invoice = session.CreateEntity(“Invoice”,
XElement.Parse(“<Invoice><InvoiceDate>2019-01-01T00:00:00</InvoiceDate></
Invoice>”));

XElement is created and explicitly passed to the CreateEntity() method.
Note: This should not be confused with passing XML as a string to the CreateEntity() method, as this
does not bind the Entity to any object.

Dictionary<string, object>:

var invoice = session.CreateEntity(“Invoice”, new Dictionary<string, object>
{ { “InvoiceDate”, new DateTime(2019, 1, 1) }, {“LineItems”, new
List<LineItem>()} };

Dictionary instance is initialized with the InRule Field names and associated values and explicitly
passed to the CreateEntity() method.

ExpandoObject:

dynamic obj = new ExpandoObject();
obj.InvoiceDate = new DateTime(2019, 1, 1);
var invoice = session.CreateEntity(“Invoice”, obj);

ExpandoObject is populated with properties matching Field names on the Entity and explicitly passed
to the CreateEntity() method.

4.10.2 Binding to Collections

Historically, an object exposing collection properties required the .NET collection type to implement
either IList or IList<T> in order to be used in a .NET Assembly Schema binding.

With the release of InRule v5.3.0, support for collection types in assembly schemas has been
expanded. The following collection types are now supported (with corresponding feature sets):

Add
Member

Remove
Member

Clear Sort Get Member by
Index

Set Member by
Index

IList Yes* Yes Yes Yes Yes Yes

IList<T> Yes Yes Yes Yes Yes Yes

ICollection<T
>

Yes Yes** Yes No Yes*** No

IEnumerable<
T>

No No No No Yes*** No

Arrays No No No Yes Yes Yes

* Type of collection property may implement IList but cannot be declared as IList because InRule
cannot infer the type of the collection member to instantiate.

** ICollection<T> collections can only remove items by object, not by index, therefore this only
works if the member object at the index being removed does not exist in the same collection more
than once; if it does, an Exception will be thrown because the collection would only remove the first
instance of the object in the collection, which may not be the desired index.

*** ICollection<T> and IEnumerable<T> do not ensure deterministic ordering of items that they
contain, however most implementations tend to enumerate the items in the same order each time.

Date of Publication: 3/22/2021

Application Integration with InRule 141

Addressing a specific index in these collections is emulated by advancing the enumerator the desired
number of times to access the member by index.

4.10.3 .NET Assembly State Refresh Options

When a rule application schema is bound to a .NET assembly and the instance methods from the
bound classes are being called from within rules, there is a setting available that can improve
performance in certain situations. By default, all bound fields must be refreshed in order to ensure
the dependency network is aware of the changes that occurred within the method. Minimizing the
fields that are refreshed after the call can reduce overall processing time, especially for large bound
schemas or when instance methods are called often. The following directions will explain the process
of telling the rules engine to only update specific fields specified by the user.

By double-clicking the method name in the .NET assembly schema import pane, a "RuleWrite
Information" dialog appears which allows the user to control whether or not the method call action in
InRule needs to refresh the working memory state with the updated object memory state. The
setting "Enable full refresh of all bound objects "(which is enabled by default) will refresh the entire
object state to working memory after each method invocation. This setting may be unchecked when
it is known that the method will not result in underlying state changes that need to be refreshed. In
situations where the refresh is warranted, but performance is still of utmost consideration, individual
fields can be designated for refresh rather than the entire object. Within the "RuleWrite Information"
dialog, with "Enable full refresh of all bound objects" unchecked, one can explicitly list the fields that
are to be refreshed when the method is called. Checking the "Enable Recursion" checkbox for an
entity field will recursively refresh all of the entity's children.

These optimizations are also obtainable by decorating your classes and/or methods with
"InRuleImport*" attributes.

The Refresh Fields Action is also available in rule authoring and can be used to selectively refresh
field values to working memory.

4.11 InRule Culture Settings

The culture settings of InRule are saved with a baseline of default English (United States) settings. At
runtime or during authoring, the culture-specific formatting for dates, datetimes, and numbers are
translated into the Windows settings defined by the user session for the operating system. This is
true throughout InRule for the rule authoring in irAuthor, rule testing in irVerify, and rule execution in
irServer.

Generally speaking, a user can author rules in Europe and see the formats displayed that are specific
to European users. When that rule application is saved, InRule translates relevant data to the
assumed English (United States) default for storage. Opening the rule application in a different
Windows setting will result in those relevant formats being translated from the English (United States)
baseline into the culture settings of the current user. This allows for portability of the rules/entity
model (rule application) and provides independence from conflicting user settings.

Some authoring considerations for Dates, DateTimes and Numbers are as follows:

Multiple argument functions require quotes around European formatted numbers because
comma is the separator for function arguments. For example, Round(number,digits) in
European format must be entered as Round(‘1000,987’,2). The English (United States) default
equivalent is Round(1000.987,2).

Data stored as date, datetime, or number types will display in culture specific settings in inline
tables. Date/datetime/number values stored in a Text type column are not adjusted per
culture setting.

Since the culture specific settings of InRule are adopted from the user settings by default, the culture
formats can be overridden at the thread level using .NET class libraries. By overriding the culture
settings of the thread, developers can serve the culture settings to InRule calls. Sample source code

Date of Publication: 3/22/2021

InRule Developer Help142

for overriding the thread culture to English-United Kingdom is as follows:

using System.Threading;

using System.Globalization;

...

 CultureInfo newCulture = new CultureInfo("en-GB");

 Thread.CurrentThread.CurrentCulture = newCulture;

 session.ApplyRules();

See also Overriding Culture Settings at Runtime

4.12 Interacting with Non .NET Platforms

Calling the Rule Engine from COM

A COM-compliant typelib can be provided with the InRule installation to fully integrate the rule engine
with a COM application.

Once set as a reference, all objects, methods, and events exposed by the irSDK will become
available to the application.

Calling the Rule Engine from Java or other languages

The best approach for interacting with the rule engine from a non-Microsoft programming language is
by writing a custom web service.

4.13 Embedding Authoring Controls

Almost all of the controls used to edit rules in irAuthor can be embeddable in custom .NET and WPF
applications. This allows users to create or modify rule applications or parts of a rule application
inside of their own custom .NET solution. This provides a domain-centric authoring experience with
minimal coding efforts.

WPF controls can be embedded in WinForm application. Please see Embedding InRule Controls in
WinForms for details.

The following is an example of a WPF application hosting the Business Language Editor. The tree on
the left is a standard WPF tree which leverages the Authoring Framework Image Service to display
the appropriate image for each rule definition.

Note: To load InRule resources, the Control Factory must be created prior to the loading of any
windows.

Date of Publication: 3/22/2021

Application Integration with InRule 143

The following topics and examples explain how to embed InRule Controls

The Process of Embedding InRule Controls

WinForm Considerations

4.13.1 The Process of Embedding InRule Controls

Assemblies required
The minimal assemblies required for embedding InRule controls for WPF (unless otherwise noted)
include the following:

Assembly Name

InRule.Authoring

InRule.Authoring.BusinessLanguage

InRule.Authoring.Editors

InRule.Authoring.Windows

InRule.Common

InRule.Repository

WPF assemblies are located in <InRule installation directory>\irSDK\bin.

Control Factory
The Control Factory is a class in The Rule Authoring Framework that abstracts much of the code
required to create an instance of a control that can edit an InRule definition object (Entity, Rule Set,
Rule, etc). The job of the Control Factory is to provide a control based on the type of object which is
passed in.

Date of Publication: 3/22/2021

InRule Developer Help144

Process
The typical process for embedding one of InRule's controls in WPF is as follows:

1. Create an instance of the ControlFactory

2. Load the Rule Application

3. Load the Rule Application into the Control Factory

4. Get the desired rule to be edited

5. Call the GetControl method on the Control Factory passing the definition object to be edited.

6. Load the control into the form. A common approach is to use the ContentControl available
in WPF.

Sample code:

// Create control factory

var _controlFactory = new ControlFactory();

// Load the rule app

var _ruleAppDef = RuleApplicationDef.Load(@"C:\work\MortgageCalculator.ruleapp");

// Load the rule app into the control factory

_controlFactory.OpenRuleApplication(_ruleAppDef);

RuleSetDef langRule = _ruleAppDef.GetRuleSet("ValidateLoanInfo");

// Get the control and load it into the content control in the form

contentControl.Content = _controlFactory.GetControl(langRule);

Please see Embedding InRule Default Editors for more details.

Saving
Any changes that are made in an embedded control must be saved back to the rule application.
Some changes are saved automatically back to the rule application. However, it is best to call the
SaveValues method as shown below to ensure everything is saved correctly. Here is the code
required to perform the save.

Note: This saves changes the RuleApplicationDef that is in memory, saving back to the file system or
Catalog is a separate operation.

public void SaveRule(IValidatingEditor editor)

{

if (editor != null)

{

editor.SaveValues();

}

}

Controls with Display Options
Using the ControlFactory's GetControl method as described above will return the entire control as it is
seen in irAuthor. This includes a label and image based on the type of control, a text box for
updating the object's Name and a check box for enabling/disabling rules (if applicable). There are
cases where it may not be desirable to have the entire editor displayed in an application. For this
reason, the most commonly used controls can also be embedded without these extra items. The
controls available in this manner are the Business Language, Decision Table and Condition editors.
See Embedding the Language Rule Editor, Embedding the Decision Table Editor and Embedding the
Condition Editor for samples of each.

Date of Publication: 3/22/2021

Application Integration with InRule 145

4.13.2 WinForm Considerations

Embedding the InRule WPF controls in a WinForm application works the same is it does with WPF.
This includes the initialization of the ControlFactory, loading the controls and saving changes. There
are, however, a couple considerations to be aware of.

ElementHost control
In order to host a WPF control in a WinForm application, the ElementHost control must be used. This
control was built for this exact purpose and is not specific to InRule.

// Get the business language editor and load into ElementHost control

elementHost.Child = _controlFactory.GetControl(langRule);

WPF Application Object
WPF controls that have popups require an instance of the WPF Application Object. In a WPF
application, this is automatically created. This is not the case in a WinForm application. For this
reason, this object must be created manually. The Application also must be set to remain open until
it is shut down through code, otherwise it will shut automatically when the WinForm applications
determines it is no longer needed. The following code will open the Application object in a WinForm
and keep it open until it is closed. Shutting down the Application object when the WinForm closes is
the recommended approach.

// Create appliication object

System.Windows.Application app = new System.Windows.Application();

// Set shutdown mode to explicit

app.ShutdownMode = ShutdownMode.OnExplicitShutdown;

// Create a delegate that will close the app object when the WinForm closes

Closed += delegate { app.Shutdown(); };

4.14 Customizing irAuthor with Extensions

irAuthor was built with the goal of being much more configurable by end users than previous versions
of the product. This was achieved by making a more modular product that can optionally load the
different pieces of functionality that are shipped with InRule. Custom functionality can also be
created by the end user in the form of extensions which can be loaded into irAuthor alongside or in
place of system extensions that ship with InRule. With extensions, irAuthor can be modified to look
and work how you want.

Extensions can be created by any developer that has irSDK installed on their machine. An extension
is simply a .NET solution that references InRule assemblies, allowing developers to write code against
the new authoring framework and its underlying services. These services provide the developer with
simplified access to accomplish most authoring related goals.

The authoring framework is comprised of a set of .NET assemblies that provide the functionality in
irAuthor. System extensions that provide the out of the box functionality in irAuthor are built with the
framework, which is public so it can be used by non-InRule developers as well. Modifications could
include adding, removing or modifying functionality and user interface components.

Extension examples to customize irAuthor could include:

Override default editors in irAuthor

Create a custom version of the Set Value control to allow users to select from a dropdown list
of domain specific values

Automate processes inside of irAuthor

Date of Publication: 3/22/2021

InRule Developer Help146

Launch irVerify in the context of a certain entity with a given test file without having to
navigate away from the currently selected element

Create rule elements with a defined pattern to simplify the creation of similar entities or rule
sets

Add pre-defined attributes to a rule element by toggling a button in the ribbon as opposed to
have to type them in

Create custom views based on a user or role

Add/Remove Navigation Bar items

Add/Remove buttons from the Ribbon

Create new windows in irAuthor to capture additional information

The following topics and examples explain how to create custom irAuthor extensions

The Rule Authoring Framework

Example of Creating an irAuthor Extension

Extension Advanced Topics

4.14.1 The Rule Authoring Framework

The rule authoring framework contains a set of application services that are used by irAuthor to
perform all authoring related tasks. These services are public and can be used in custom built
extensions as well. Below is a list of all of the services, broken out by namespace, along with a
description of the functionality each one provides.

Note: The rule authoring framework services are not web services, but instead a set of classes
available to the developer to gain access to and work with the different parts of irAuthor and the
loaded rule application.

InRule.Authoring.Services

SelectionManager This service allows developers to get and set the currently
selected item (the object currently being edited) and raise
events when the selected item changes, allowing subscribers to
respond as needed.

ContentManager The Content Manager simply maps .NET objects to their
registered editors. These objects are typically rule application
definition objects, however, this service can be used for custom
(non-InRule) defined objects and editors as well.

RuleApplicationServ
ice

Provides primary means of interacting with the rule application.
 Rule applications can be loaded, created, closed and modified
using this service. Events can also be raised to notify
subscribers of rule application changes.

ImageService The Image Service provides small and large images for InRule
objects; for example, when an Entity is passed to the service, it
returns the entity image in the size specified. The image factory
provides named runtime access to the over 300 images shipped
with irAuthor.

ClipboardService Provides clipboard operations for InRule objects.

CommandService Manages command providers, which provide commands based
on a given object.

InlineTableImportS
ervice

Manages inline table importers.

LoggingService Handles centralized logging.

NavigationHistoryS Manages navigation history.

Date of Publication: 3/22/2021

Application Integration with InRule 147

ervice

OptionsService Manages application options.

SettingsStorageSer
vice

Storage for settings in the Isolated Storage store.

InRule.Authoring.Windows.Services

irAuthorShell The Shell is the primary means of interaction for modifying the
irAuthor user interface. This includes activities such as adding/
removing tabs, groups and buttons from the Ribbon, adding/
removing panes from the Navigation Bar and launching custom
Property Pages or Tool Windows.

RecentlyUsedServic
e

Manages the list of recently used rule applications.

SearchService Manages saved searches.

TestService Manages rule application testing.

InRule.Authoring.Core.Navigation.Services

BookmarksService Manages the bookmarks

4.14.2 Example of Creating an irAuthor Extension

The following example walks through the process of creating an extension for irAuthor that will
demonstrate:

Adding a button to the Ribbon and using a Command to run user defined code

Enabling and disabling of a button using authoring framework events

Working with the Selection Manager Service

Modifying the rule application through user defined code so irAuthor is aware of the changes
using the Rule Application Service

Setting up a new Project

1. Create a new WpfCustomControlLibrary

Date of Publication: 3/22/2021

InRule Developer Help148

2. Select the .NET Framework 4.7.2 option for the Target Profile on the Application property
page.

3. Delete the default CustomControl1.cs page

4. Delete the Themes folder

5. Add a new class called Extension.cs

6. Make the class Public

7. Add the following references (assemblies available from the InRule installation folder\irSDK

Date of Publication: 3/22/2021

Application Integration with InRule 149

\bin)

Inrule.authoring.dll

Inrule.authoring.windows.dll

Inrule.common.dll

Inrule.respository.dll

Creating the extension class

1. Set the Extension class to inherit from the InRule.Authoring.Windows.ExtensionBase class

public class Extension:ExtensionBase

2. Create a default Constructor that will call the base class constructor with the name,
description and Guid for the extension. The built in Guid generator in Visual Studio can be
used to create your Guid.

public Extension()

 : base("EntityViewer",

 "Generates a notification that dumps all fields and their

values into a notification",

 new Guid("{CD02ADCB-BC8A-4393-A8EA-2903D5A2AD11}"))

 {

 }

3. Create a method in the Extension class called Enable which is an abstract inherited member
and must be implemented. This is the method that will be called when the extension is
loaded and where the code will go that adds the button to the Ribbon and wires up events
that will enable and disable our button when not applicable.

public override void Enable()

 {

 }

4. Add a private class variable of type VisualDelegateCommand which will be the command
that executes when the button is clicked

private VisualDelegateCommand _notificationCommand;

5. In the Enable method, add a new group to the Ribbon passing in the text for the group and
the image that will be displayed if there is not enough room in the Ribbon. The image below
is retrieved using the ImageFactory, which contains all of the images that ship with InRule,
each of which is available in this manner.

var group = IrAuthorShell.HomeTab.AddGroup("Notifications",

ImageFactory.GetImageAuthoringAssembly("/Images/

FireNotificationInfo16.png"));

6. Instantiate the notification command. The delegate command is passed the method (which
will run when the button is clicked), button text, small button image, large button image and
whether the button is enabled by default.

Note: The AddEntityNotification method creation will be shown below.

_notificationCommand = new

VisualDelegateCommand(AddEntityViewerNotification, "Add entity viewer",

 ImageFactory.GetImageAuthoringAssembly("/Images/

Date of Publication: 3/22/2021

InRule Developer Help150

FireNotificationInfo16.png"),

 ImageFactory.GetImageAuthoringAssembly("/Images/

FireNotificationInfo32.png"),

 false);

7. Add the notification command to the group.

Note: Several buttons could be added to a single group. Buttons can be added or removed
 to existing groups as well.

group.AddButton(_notificationCommand);

8. The button is now added, next wire up the events that will enable/disable it. In this case, the

button should only be enabled when the selected item is a rule set and when a rule

application is opened. To wire up the events, we use the RuleApplicationService and

SelectionManager as shown below.

RuleApplicationService.Opened += SetEnabled;

RuleApplicationService.Closed += SetEnabled;

SelectionManager.SelectedItemChanged += SetEnabled;

9. The SetEnabled method will set the IsEnabled property on the command which will enable/
disable the button.

private void SetEnabled(object sender, EventArgs eventArgs)

{

 // make sure we are on a rule element

 var selectedDef = SelectionManager.SelectedItem as RuleElementDef;

 if (selectedDef != null)

 {

 // if the selected def has an entity and rule set, this is a

entity based rule or ruleset

 _notificationCommand.IsEnabled = ((selectedDef.ThisEntity !=

null) && (selectedDef.ThisRuleSet != null));

 }

 else

 {

 // if this is not a rule element, always disable it

 _notificationCommand.IsEnabled = false;

 }

}

10.Finally, create the method that will use the InRule SDK to create the notification. Most of the
method below is standard SDK code, which has not changed in the new release of InRule.
The actual adding of the notification to the RuleSet does use the new Rule Application service
so the rest of the application knows that it was added, such as the tree.

private void AddEntityViewerNotification(object obj)

{

 // get selected rule set

 var ruleElementDef = SelectionManager.SelectedItem as RuleElementDef;

 if (ruleElementDef != null)

 {

 // get the ruleSet, should not be null or button would be

disabled

 var ruleSetDef = ruleElementDef.ThisRuleSet;

Date of Publication: 3/22/2021

Application Integration with InRule 151

 // get the entity that the ruleset is authored in (assumes entity

based rule set)

 var entityDef = ruleSetDef.ThisEntity;

 var s = new StringBuilder();

 s.AppendFormat("{0} field values:{1}", entityDef.Name,

Environment.NewLine);

 // spin through entity fields and generate the notification

 foreach (FieldDef fieldDef in entityDef.Fields)

 {

 s.AppendFormat("{0}: <% {0} %> {1}", fieldDef.Name,

Environment.NewLine);

 }

 // create notification and set message text

 var notificationDef = new FireNotificationActionDef();

 notificationDef.NotificationMessageText = s.ToString();

 // add notification to the rule set using the Controller

 RuleApplicationService.Controller.AddDef(notificationDef,

ruleSetDef);

 }

}

Deploying the Extension
After compiling the project, to deploy it, simply copy the DLL to the Extensions folder underneath the
location where the irAuthor.exe is running. This is typically located at <InRule installation directory>
\irAuthor\Extensions. irAuthor must be closed to copy the DLL if it already existed in the Extensions
folder. After copying, launch irAuthor and go to File -->Extensions to enable the extension.

Note: You will need to close and re-open irAuthor in order to see a newly added extension.

4.14.3 Extension Advanced Topics

Creating System Extensions
It is possible to create an extension that cannot be disabled by the user without physically deleting
the DLL file. This approach was taken due to the fact that users typically do not have permissions to
delete files under Program Files. To create a system extension, when calling the constructor of the
BaseExtension class, use the overload which accepts an isSystemExtension parameter. Simply pass
in a value of true to make a system extension.

The following code is the same as the previous example, except true is being passed in for the final
parameter (isSystemExtension), which makes it a system extension.

public Extension()

 : base("EntityViewer",

 "Generates a notification that dumps all field values into a notification",

 new Guid("{CD02ADCB-BC8A-4393-A8EA-2903D5A2AD11}"),

 true)

{

}

The Window Factory
The WindowFactory is a static class that can be used to create windows inside of irAuthor to capture
information. Windows are made by creating a WPF User Control. Xaml can be used to built out
entire forms with all of the standard WPF controls. The WindowFactory can then be leveraged to load

Date of Publication: 3/22/2021

InRule Developer Help152

the forms from inside the extension.

Here is an example of a custom window that was created in an extension:

Assuming a WPF User Control is created and named TestDataControl, the following code will create
an instance of the window and launch it inside of irAuthor.

// Create an instance of the user control

var control = new TestDataControl(settings);

// Use the window factory to create the window passing the description, control

and required buttons

var window = WindowFactory.CreateWindow("Test settings", control, "OK",

"Cancel");

// Subscribe to the click event to run the desired code

window.ButtonClicked += myClickEvent;

window.Show();

Debugging with Developer extension
InRule ships with a Developer extension that is very useful when creating an irAuthor Extension. The
extension is not enabled by default, but can be enabled by going to File --> Extensions. Check the
check box next to "Developer" to enable the extension.

Once enabled, a new tab in the Ribbon labeled "Developer" will appear, as shown here:

Below is a list of utilities available along with a description of each.

Attach Debugger
This is by far the most useful utility available. It allows an extension developer to go into irAuthor
and attach to the instance of their Visual Studio project that contains the extension code. Once
attached, all of the developers code is available for debugging. This means you can set a break
point in the code, click the button created by the extension and step through the code. This greatly
increases the ability to create and debug irAuthor extensions.

Date of Publication: 3/22/2021

Application Integration with InRule 153

The process is as follows:

1. Click the Attach Debugger button – This will launch the standard Visual Studio attachment
window

2. Select the instance of Visual Studio that has the desired extension project open

3. Set a break point in the solution

4. Go back to irAuthor and perform the action (button click, select item, etc.) that will trigger
the extension code

5. The break point should be hit and you can step through the code

Property Grid
The Property Grid displays all public and private properties for the currently selected object. This is
useful for scenarios where a developer wants to create their own View and needs to see which
properties are available for binding to the View Model.

Date of Publication: 3/22/2021

InRule Developer Help154

Event Watcher
The event watcher will display relevant events that are firing in irAuthor. This assists a developer
when they are trying to figure out which events to attach to for their extensions.

Using post build events to simplify testing
To simplify testing when creating an extension, make a post-build event that will copy the compiled
DLL to the Extensions folder where irAuthor is running. irAuthor will need to be closed each time so
the file copies successfully.

Example:
copy $(TargetPath) <InRule installation directory>\irAuthor\Extensions\

Date of Publication: 3/22/2021

Application Integration with InRule 155

4.15 License Activation Utility

The License Activation Utility for XCOPY deployments

InRule supports a License Activation Utility that allows a user to activate and deactivate licenses and/
or register the Event Log Source without running the MSI installer. The Activation Utility is a WPF
application with a full Windows UI, but it will run silently if started with command line arguments. The
InRule License Activation Utility ships with versions 4.1.3 and later.

After installation of any InRule component, the ActivationUtility.exe file will be available in the
<InRule installation directory>\ActivationUtility folder. This folder can be XCOPY deployed to
machines that require deployment, license activation and/or Event Log Source registration without
running the InRule MSI installer.

A sample screen shot of the utility is below. A given machine only requires activation one time, and
then InRule DLLs may be deployed to any location on that machine.

Date of Publication: 3/22/2021

InRule Developer Help156

Activating a new license

When you receive a license key for an InRule product or feature, you need to activate it before it can
be used on the machine. To do this:

If your computer is not connected to the internet or otherwise cannot access the InRule license
server, check the "I don't have an internet connection" box near the top of the form.
In the "Activate Licenses" section, enter your name and organization.
Enter your license key in the space provided. You may enter more than one key, one per line.
Click Activate.

Date of Publication: 3/22/2021

Application Integration with InRule 157

Reactivating an existing license

If your time-bound license has expired or is about to expire, you can reactivate or refresh it once
InRule updates the license server with your new expiration date.

If your computer is not connected to the internet or otherwise cannot access the InRule license
server, check the "I don't have an internet connection" box near the top of the form.
In the "Activated Licenses" section select the affected key(s).
Click Reactivate.

Deactivating an existing license

You may also deactivate a license in order to free it up for use on another computer.

If your computer is not connected to the internet or otherwise cannot access the InRule license
server, check the "I don't have an internet connection" box near the top of the form.
In the "Activated Licenses" section select the key(s) you wish to deactivate.
Click Deactivate.

Managing the event log

You may install or uninstall the InRule Event Log source. For more information, see Event Log
Details.

Note: Unlike the InRule Installer, the Activation Utility does not automatically attempt to create an
InRule-specific Event Log Source/section. In order to perform this recommended function, you will
need to run the utility by right-clicking and selecting "Run as administrator". Installation and un-
installation of the InRule Event Log Source is then accomplished using the button at the bottom of the
Activation utility's GUI. The action is independent of activating/deactivating licenses but can be
performed in the same session.

Command Line interface

In addition to the Windows user interface, the License Activation Utility also supports a command line
interface so that it can be invoked from scripts or code. If a given operation is successful, the
process will exit a code of zero. If the operation fails, then a non-zero exit code will be returned.
During execution, all output is written to the Windows Standard Output Stream as well as a log file.

The following command line arguments are supported:

-u <username> (required) Sets the name of the user that will be
logged with the license activation

-o <organization> Sets the name of the organization that
will be logged with the license activation

-a <license key> Activates InRule components for a
specific license key over an available
Internet connection

-d Deactivates all found InRule components
over an available Internet connection

-dl <license key> Deactivates all found InRule components
for a specific license key over an
available Internet connection

-cs Checks the status of InRule components.
License status messages are written to

Date of Publication: 3/22/2021

InRule Developer Help158

the output stream.

-il Installs InRule Event Log Source

-ul Uninstalls InRule Event Log Source

-h or -? Display Help

Activation Utility command-line code samples (using C#):

The following code sample demonstrates using the command line to activate a license key.

var exePath = "<some path to ActivationUtility.exe>";

var commandLineArgs = "-u someusername -o someorgname -a xxx-xxx--xxxxx-xxxxx-

xxxxx-xxxxx-xxxxx";

using (var process = new Process())

{

 process.StartInfo.FileName = exePath;

 process.StartInfo.RedirectStandardOutput = true;

 process.StartInfo.UseShellExecute = false;

 process.StartInfo.Arguments = commandLineArgs;

 process.Start();

 // It is important that the following call is made before the

process.WaitForExit.

 // Otherwise a deadlock can occur.

 var commandOut = process.StandardOutput.ReadToEnd();

 process.WaitForExit();

 var exitCode = process.ExitCode;

 Console.WriteLine("Installation process exit code: {0}", process.ExitCode);

 Console.WriteLine(commandOut);

 process.Close();

}

The following code sample demonstrates using the command line to install the Event Log Source.

var exePath = "<some path to ActivationUtility.exe>";

var commandLineArgs = "-il";

using (var process = new Process())

{

 process.StartInfo.FileName = exePath;

 process.StartInfo.RedirectStandardOutput = true;

 process.StartInfo.UseShellExecute = false;

 process.StartInfo.Arguments = commandLineArgs;

 process.Start();

// It is important that the following call is made before the

process.WaitForExit.

// Otherwise a deadlock can occur.

var commandOut = process.StandardOutput.ReadToEnd();

 process.WaitForExit();

 var exitCode = process.ExitCode;

 Console.WriteLine("Installation process exit code: {0}", process.ExitCode);

 Console.WriteLine(commandOut);

 process.Close();

}

Logging:

Date of Publication: 3/22/2021

Application Integration with InRule 159

The Activation Utility logs to the %temp%\InRule\Logging\InRule.Licensing.Log file.

You can modify the log level and/or how and if this information is logged to the Event Log by
modifying the Activation Utility's configuration file, ActivationUtility.exe.config, located in the same
directory as the Activation Utility.
See InRule Logging Config File Settings for additional details.

4.16 InRule Temp Files

InRule will periodically read and write to the temp directory. Therefore the user account which the
app domain is running under needs to have sufficient permissions to the temp directory, so that it
can read/write files and directories.

The temp directory used will be whatever %TMP% is set to, which may depend on whether the
account has user environmental variables:

If you are running InRule from an application managed by IIS, then the user account will be the
identity of the application pool. Therefore, you need to assure that the account has full access to the
temp directory, or you can grant ‘Everyone’ full access, as shown below:

Date of Publication: 3/22/2021

InRule Developer Help160

4.17 irSDK for .NET Core

InRule support for .NET Core takes the form of additional support in the NuGet packages. The
InRule.Common, InRule.Repository, and InRule.Runtime packages contain libraries that target

both the full .NET Framework 4.7.2 and .NET Standard 2.0. This allows you to use the runtime SDK in
either framework.

This topic describes this support in more detail.

Which Framework Should I Use?

The choice of whether to use the full .NET Framework or the .NET Core Framework is not a simple
one. .NET Core is Microsoft's future direction, and their guidance is to use .NET Core, unless you
can't.

Date of Publication: 3/22/2021

Application Integration with InRule 161

InRule recommends .NET Core in these situations.

You want to migrate away from the Windows platform

You are beginning a new development project

You want to take advantage of the newest framework technologies

You expect a performance benefit from using .NET Core

Here are some reasons you might want to use the full .NET Framework.

You have an existing implementation with a relatively small number of irServer cores

You require functionality that .NET Core does not provide

You should not attempt to mix the full .NET Framework and the .NET Core Framework in the same
application. Doing so would give unpredictable results.

Setting up irSDK for .NET Core

To use the irSDK support in .NET Core, first install InRule version 5.1.0 or later on a Windows
computer, selecting the irSDK component. This places the NuGet packages in the install directory,
under irSDK\NuGetPackages. From there, deploy the NuGet packages as you would otherwise.

Based on your license type, you may need an additional license to use the .NET Core Framework.

Of course, you still have to activate irSDK. On a non-Windows computer, the InRule Activation Utility
is not available because it has a Windows user interface. Instead, you may download the .NET Core
activation utility from the InRule support site, support.inrule.com. This utility is a command line
program which you must run on the computer where you deploy irSDK.

To run the Activation Utility on Linux, for example, enter the command dotnet

ActivationUtility.dll, followed by command-line parameters, as outlined in License Activation

Utility. Since the Windows Event Log is not supported on non-Windows platforms, the parameters -il

(Install Log) and -ul (Uninstall Log) are not supported.

After completing license activation on Linux, the InRuleLicense.xml file will be stored by default in

the home directory of the user that activated the license, e.g. ~/.inrule/InRuleLicense.xml. This

file may be moved to /etc/inrule/InRuleLicense.xml so that irSDK may be licensed for the

system, not just the current user. The license file may also be copied to the directory of the
application that consumes irSDK.

irSDK Limitations in .NET Core

At this time, .NET Core support consists strictly of the irSDK runtime. These InRule components are
not included:

irServer Rule Execution Service. You may engage InRule ROAD Services if you want help
writing a service wrapper.

irAuthor, irCatalog, irWord, etc.

There is no installation program, per se.

Some Rule Actions are not available in .NET Core.

Execute Web Service (Execute REST Service is supported)

Execute Workflow

Execute SQL Query with an Oracle or OLE DB Endpoint (SQL Server and SQLite Databases
will work as expected)

irAuthor: irAuthor does not currently identify unsupported Rule Actions.

The .NET Assembly Schema element supports a .NET Standard assembly, but not a .NET Core
assembly.

https://support.inrule.com

Date of Publication: 3/22/2021

InRule Developer Help162

POSIX: irSDK for .NET Core does not support en-us-POSIX.

InRule Catalog Service: The InRule Catalog Service uses WsHttpBindings by default, but .NET

Core can only use BasicHttpBindings.

Here is a sample WCF configuration for the IIS Catalog Service:

<system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding" maxReceivedMessageSize="50000000">
 <readerQuotas maxStringContentLength="50000000" />
 <security mode="None">
 <!-- **WARNING** Changes to the security binding must also be made in
 client binding code -->
 <transport clientCredentialType="None" proxyCredentialType="None" />
 <message clientCredentialType="None" />
 </security>
 </binding>
 </wsHttpBinding>
 <basicHttpBinding>
 <binding name="BasicHttpBinding" maxReceivedMessageSize="50000000">
 <readerQuotas maxStringContentLength="50000000" />
 <security mode="None">
 <transport clientCredentialType="None" proxyCredentialType="None" />
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <services>
 <service name="InRule.Repository.Service.RepositoryService"
 behaviorConfiguration="repositoryServiceBehavior">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="WSHttpBinding"
 contract="InRule.Repository.Service.ICatalogServiceContract" />
 <endpoint address="core" binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding"
 contract="InRule.Repository.Service.ICatalogServiceContract" />
 <!-- ** NOTE Metadata not supported SSL at this time **-->
 <!--<endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>-->
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="repositoryServiceBehavior">
 <serviceDebug httpHelpPageEnabled="true" />
 <!-- Enables the IMetadataExchange endpoint in services that -->
 <!-- use "metadataSupport" in their behaviorConfiguration attribute. -->
 <!-- In addition, the httpGetEnabled and httpGetUrl attributes publish -->
 <!-- Service metadata for retrieval by HTTP/GET at the address -->
 <!-- "http://localhost:8080/SampleService?wsdl" -->
 <!-- ** NOTE Metadata not supported SSL at this time **-->
 <!-- <serviceMetadata httpGetEnabled="true" httpGetUrl=""/>-->
 </behavior>
 </serviceBehaviors>
 </behaviors>

Date of Publication: 3/22/2021

Application Integration with InRule 163

 <serviceHostingEnvironment multipleSiteBindingsEnabled="True" />
</system.serviceModel>

Here is a sample WCF configuration for Windows Service Catalog Service:

<system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding" maxReceivedMessageSize="50000000">
 <readerQuotas maxStringContentLength="50000000"
maxNameTableCharCount="50000000" />
 <security mode="None">
 <!-- **WARNING** Changes to the security binding must also be made in
 client binding code -->
 <transport clientCredentialType="None" proxyCredentialType="None" />
 <message clientCredentialType="None" />
 </security>
 </binding>
 </wsHttpBinding>
 <basicHttpBinding>
 <binding name="BasicHttpBinding" maxReceivedMessageSize="50000000">
 <readerQuotas maxStringContentLength="50000000" />
 <security mode="None">
 <transport clientCredentialType="None" proxyCredentialType="None" />
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>

 <services>
 <service name="InRule.Repository.Service.RepositoryService"
 behaviorConfiguration="repositoryServiceBehavior">
 <endpoint address="http://computername:8082/InRuleRepositoryService_v5.0.29"
 binding="wsHttpBinding" bindingConfiguration="WSHttpBinding"
 contract="InRule.Repository.Service.ICatalogServiceContract" />
 <endpoint address="http://computername:8082/InRuleRepositoryService_v5.0.29/
core"
 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding"
 contract="InRule.Repository.Service.ICatalogServiceContract" />
 <!--<endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />-->
 </service>
 </services> <behaviors>

 <serviceBehaviors>
 <behavior name="repositoryServiceBehavior">
 <serviceDebug httpHelpPageEnabled="true" />
 <!-- Enables the IMetadataExchange endpoint in services that -->
 <!-- use "metadataSupport" in their behaviorConfiguration attribute. -->
 <!-- In addition, the httpGetEnabled and httpGetUrl attributes publish -->
 <!-- Service metadata for retrieval by HTTP/GET at the address -->
 <!-- "http://localhost:8080/SampleService?wsdl" -->
 <!-- ** NOTE Metadata not supported SSL at this time **-->
 <!-- <serviceMetadata httpGetEnabled="true" httpGetUrl=""/>-->
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Date of Publication: 3/22/2021

InRule Developer Help164

Known Issues

At runtime, Windows and Linux behave differently in some cases.

Culture-specific string comparisons: On Windows, comparing "Straße" = "Strasse" results in

true. On Linux, the same comparison results in false.

Date round tripping: Converting a date to a string and back can give incorrect results. For
example, 1/16/2067 converts to the string "1/16/67" which then converts to the date 1/16/1967.

InRule recommends you do not convert dates to strings.

Serialization with BinaryFormatter: When serializing Entity or Session state and using a bound
.NET Assembly configured to use BinaryFormatter, any DateTime.Kind will not be preserved when
deserializing; it will always default to DateTimeKind.Unspecified. This is a known issue in .NET Core.

The RuleApplicationDef or any Def instance that includes a collection will fail to serialize with
BinaryFormatter because the .NET Core version of CollectionBase is not marked as
[Serializable]. This affects both Windows and Linux.

Logging

InRule uses the Windows Event Log for its logging. Since this is not available on other operating
systems, any attempt to use it will fail in .NET Core.

Performance Considerations

In benchmark tests at InRule, the same Rule Application was run on various operating systems and
platforms. Here are the execution times, in milliseconds.

Platform Windows Linux

.NET Framework 4.6.2 1423 N/A

.NET Core 2.0.7 1382 2097

.NET Core 2.1.0 Preview 2 1312 1555

Mono 5.10 1628 1898

This shows that the .NET Core Framework generally outperforms the full .NET Framework, and that it
is improving. It also shows that .NET Core on Windows performs better than the same test on Linux.

Date of Publication: 3/22/2021

Implementation Guide

Part

V

Date of Publication: 3/22/2021

InRule Developer Help166

5 Implementation Guide

Overview

This guide is intended to provide high-level architectural and design guidance regarding the
implementation of InRule® within single applications and across disparate systems.

Before embarking on any InRule implementation, the following concepts should be considered:

How many different business problems will the rule implementation need to solve? Do
components and services need to be reusable? How many different rule applications are
required?

What is the anticipated load the rule implementation needs to support?

Do the applications and business problems require stateful execution, or can a stateless
architecture be used?

Which technology stacks will be included in the integration with rules?

What types of system architectures are best suited for scalability, portability, and integration
with disparate systems?

As the solution is developed and deployed, which configuration settings and SDK approaches
will optimize maintenance and performance?

How will rule changes be managed across development, testing, and production
environments?

This section includes five major sub-sections that assist in answering the questions posed above:

High-level Implementation Guidelines

Application Architectures

Common Integration Scenarios

Rule Deployment

Performance Tuning and Best Practices

5.1 High-level Implementation Guidelines

Overview

This section contains information on general architectural concepts that are imperative to any
successful rule integration project.

Anatomy of a Rule Request

Typical Rule Request Workflow

Service-Oriented Rule Architectures

5.1.1 Anatomy of a Rule Request

Integration to Execute Rules at Runtime

Before rules can be consumed at runtime by production applications, some integration points
must be defined between calling applications and the rule engine. In general, at least a small

Date of Publication: 3/22/2021

Implementation Guide 167

amount of .NET code must be written to create these integration points.

Due to the fact that the InRule SDK is written in .NET code, there are many possible application
architectures where similar and simple integration code and approaches can be reused.
Essentially most places that a .NET application can run are also possible places where InRule can
run. The InRule integration can normally be accomplished with just a few lines of .NET code, and
then exposed to any number of consuming applications using reusable DLL or service interfaces.

Runtime rule execution is accomplished by creating a "rule request" to the rule engine, and then
consuming output as necessary after the rule engine has completed executing rules. A rule
request is minimally comprised of the following components that must be instantiated by
application integration code:

Rule Session - the RuleSession is a public class in the InRule SDK. It serves as the main
programming interface for developers that are invoking the rule engine. The Rule Session
automatically manages communication between user-provided data, rules, and rule engine
operations.

Entity (Application Data) - At least one InRule Entity must be created by the integration
code. The Entity is a wrapper that the rule engine uses to read and write to data provided by
calling applications. The underlying objects that are wrapped by the Entity instances are
generally custom .NET types, XML, or JSON. However, InRule also supports the ability to
construct custom data providers if other backing stores are required. Root Entities must be
created explicitly in integration code, but children of these root Entities will be automatically
generated by the rule engine during rule processing.

Rule Application Reference - The Rule Session must be directed to run a specific set of
rules against the Entity data that is provided. The Rule Session accepts a "rule application
reference" that it can use to either automatically locate an existing rule application cache
entry, or load rules and populate the rule application cache on-demand.

Rule Execution Settings (Optional) - Prior to execution, the developer can adjust rule
execution behavior using an extensive list of settings exposed by the InRule SDK. In many
cases the default settings are adequate for a given production application; in these cases no
settings need to be provided by the developer.

After a Rule Session has been populated with the required input, rules can be invoked by issuing
either an Apply Rules or Execute Rule Set call to the Rule Session.

The Anatomy of a Rule Request

Date of Publication: 3/22/2021

InRule Developer Help168

Free Threaded Caching per .NET App Domain

The Rule Session automatically manages four thread-safe caches that are maintained by the
InRule SDK. Most developers do not need to write any code against these caches, but they
should be aware that they exist and affect performance and memory usage of the rule engine.

Compiled Rule Application Cache - This cache contains the compiled rule applications that
have been consumed by the given .NET AppDomain. A compiled rule application contains
related sets of rules, along with dependent end point and schema definitions for those rules.
When a rule request is sent to the engine, rule applications are compiled on demand and
added to this cache if they are not already present

Delegate Cache - This cache contains state access delegates that are used by the rule
engine to read and write to state. This cache is populated on demand during rule execution.

SQL Query Results Cache - This cache contains record sets returned from Execute SQL
Query rules and Value Lists. This cache is populated on-demand, and is not used if no rules
integrate with SQL queries.

Web Service Results Cache - This cache contains result sets returned from rules that
execute web service calls. This cache is populated on-demand, and is not used if no rules
integrate with web services.

5.1.2 Typical Rule Request Workflow

The Life Cycle of a Typical Rule Execution Request

The main steps of a typical rule execution request in an application are as follows:

1. Create a Rule Application Reference

2. Create a Rule Session and pass it the Rule Application Reference

Date of Publication: 3/22/2021

Implementation Guide 169

3. Set rule execution settings or end point overrides for the Rule Session

4. Create an Entity which will be used to pass data (state) to the rule engine

5. Execute Rules against the data

6. Work with output

The code for a sample rule execution is included below:

public string RunRules(string xmlInput)
{

// Create rule application reference
var ruleApp = new FileSystemRuleApplicationReference(@"C:\RuleApps
\MyRuleApplication.ruleappp");

// Create a rule session
using (var session = new RuleSession(ruleApp))
{

// Adjust settings or endpoint overrides if needed

// Create at least one entity
var entity = session.CreateEntity("MyEntity", xmlInput);

// Execute auto rules
session.ApplyRules();

// Return output -- this example extracts XML
return entity.GetXml();

}
}

Step 1 - The Rule Application Reference

The Rule Application Reference is an object that points to a rule application. A rule application is
a collection of rule sets along with the data schemas and end point definitions that support those
rule sets. The reference contains enough meta-data so that rules can be loaded and compiled on
demand, or reused from the Rule Application Cache if already previously compiled. The Rule
Application Reference has three implementations which can be used to load rules from various
sources:

CatalogRuleApplicationReference - refers to a rule application stored in irCatalog®

Date of Publication: 3/22/2021

InRule Developer Help170

FileSystemRuleApplicationReference - refers to a rule application stored on a Windows
file system

InMemoryRuleApplicationReference - refers to a rule application read into memory from
any source that can produce rule application XML, such as a content management system or
database

Step 2 - The Rule Session

The Rule Session is the main point of interaction between custom SDK integration code and
the rule engine

The Rule Session requires a Rule Application Reference that is defined in Step 1 above. The
rule applications used by the reference are typically created with irAuthor®; however they can
also be built using a custom authoring solution built against irSDK or the InRule embeddable
authoring controls.

Note that the RuleSession implements IDisposable, and should be explicitly or implicitly
Disposed after it is no longer used. For stateless architectures, the .NET Using block is
recommended. For stateful architectures, the RuleSession should be disposed when deemed
no longer necessary by the given session management solution.

Step 3 - Execution Settings and End Point Overrides

There are several execution settings that control cache, execution, and parallelism behaviors.
In general the default settings should be used, but if necessary they can be overridden before
executing any rules in the rule session

If web service or database endpoints are used in rules, then the URLs and connection strings
can be overridden for any given environment. This allows different services or databases to
be used in different environments without the need to update rules. All end point overrides
should be applied before executing rules.

Step 4 - Create an Entity

At least one "root" entity must be created that will allow the rule engine to communicate with
data that is passed to the rules. The rule engine will automatically create child entities as
necessary, so those entities do not need to be explicitly created.

InRule supports a variety of ways with which the rule application schema can be defined. The
schema definition type chosen also dictates the ways with which the state can be passed into the
engine. The schema for a rule application can be defined the following ways:

Schema can be imported from one or more .NET assemblies. This schema model facilitates
passing state to the rule engine via .NET object instances.

Schema can be imported from an XSD. This schema model will result in the developer
passing state as an XML documents or strings.

Schema can also be defined ad-hoc in irAuthor. State is then defined using the RuleSession
class to create Entities and set Field values or passing in XML or JSON.

Schema can be imported from Microsoft® Dynamics® CRM if using the irX® authoring add-in.
This schema model will be backed by XML during runtime.

Generally speaking, there are some relevant statements worth mentioning about schema
definition and state models:

Often, an external schema definition will already exist. Importing an external definition as the
rule application schema will enforce consistency between the calling application and InRule.
Rule applications with an imported schema require a manual 're-sync' each time the external
definition is adjusted. This forces users of InRule to verify that introduced schema changes do
not cause issues with existing rule logic.

Building an ad-hoc schema can be an agile approach to working with a rule application.
However it may cause additional effort to map state values between external state objects
and InRule state. For example, if a rule author builds existing fields into a rule application

Date of Publication: 3/22/2021

Implementation Guide 171

schema, the developer is often accountable for seeing that those extra fields are mapped to
corresponding input/output values for the calling application.

Importing the schema from a .NET assembly adds the ability to call instance methods in the
classes from rules. Further, passing state to the engine is straightforward because the rule
session will accept a .NET object graph. During rule execution, the rule engine reads values
from the object graph using the class's Get property accessors. Likewise, the rule engine will
write object graph values using the class's Set property accessors.

Importing from either .NET assembly or XSD will allow entities and fields to be individually
aliased. During the import setup, individual entities and fields can also be included or
excluded from the import.

Step 5 - Execute Rules

Now that the Rule Session is populated, rules can now be executed against the data that was
provided to the Rule Session.

Most rule applications contain groups of rules defined as a series of "rule sets". A rule set is
simply a group of rules. The exact rule sets that are executed and the order in which rules are
executed are dependent on the fire modes, run modes, and data context of the given rule sets
that are contained within a rule application.

Fire Modes

Rule Sets can be set to one of two "fire modes":

Auto - The rule set will be available to automatically fire at least once for each instance of
the entity type to which the rule set is associated. Depending on the "run mode" and
"activation" settings of the rule set, the rule set may fire more than once or not fire at all.

Explicit - The rule set will never fire automatically. It will only fire if explicitly invoked by a
call to the InRule SDK, or when invoked by another rule.

Run Modes

The firing behavior of auto rule sets can be controlled by setting the "run mode" of the auto rule
set:

Optimized - Rules within the rule set may not fire in authored order, but are instead fired in
the fastest order as determined by the rule engine. Rules may fire more than one time if
values that they previously consumed are modified by another rule.

Sequential - Rules within the rule set fire in authored order. The entire rule set (sequence)
may fire more than one time if values that were previously consumed by the rule set are
modified by other rules.

Single Pass Sequential - Rules within the rule set fire in authored order. The rule set will
not re-fire based on data changes made by subsequent rules.

The following additional rule constructs are also supported by InRule. These rules are always set
to fire automatically (fire mode "auto"), and they may re-fire if the values that they previously
consumed are modified by another rule.

Calculations

Classifications

Constraints

Rule Context

The number of instances of a given rule and the data against which it operates is based on the
"context" of that rule. In InRule, rules can be authored in the context of an entity or a field, or
with no data context. If a rule or rule set is authored within the context of an entity or field, an
instance of that rule set or rule is created and evaluated for each instance of the entity or field
that is present within the given rule session. If a rule has a data context, it is evaluated against
the entity instance with which it is associated.

InRule also supports authoring rules with no entity or field context. These rule sets are called

Date of Publication: 3/22/2021

InRule Developer Help172

"independent rule sets". An independent rule set must have data passed to it when it is invoked,
since it has no inherent data context with which to begin reading data fields.

Running Rules

Rule execution can be initiated using one of three methods in irSDK:

RuleSession.ApplyRules - Executes all "auto" rules against entity instances that have been
added to the rule session. If auto rule sets contain rules that invoke explicit rule sets, then
those explicit rule sets will also fire.

RuleSession.ExecuteIndependentRuleSet - Executes a specific independent rule set
given input arguments passed in the call. Any auto rules that are applicable will also fire.

Entity.ExecuteRuleSet - Executes a specific explicit rule set against a given entity instance.
If the rule set accepts parameters, then parameters can be passed in the call. Any auto rules
that are applicable will also fire.

Rule Execution Order and Frequency of Rule Execution

During an ApplyRules request, the engine fires all Optimized and Sequential rule sets before
firing any Single Pass Sequential rule sets. The Optimized and Sequential rule sets fire in the
order that they are discovered as the engine reads in root entities and related child entities.
Single Pass Sequential rule sets are fired last in the order that they were discovered during the
initial read of entities.

When an ExecuteIndependentRuleSet or ExecuteRuleSet call is invoked, all Optimized and
Sequential rule sets fire first in the order that they are discovered, followed by the explicit rule
set that has been requested in the call. Finally, any Single Pass Sequential rule sets are fired in
the order that they were discovered during the initial read of entities.

Other types of auto rules, such as Calculations, Classifications, and Constraints, are fired on
demand as they are consumed by other rules or rule engine state reads.

If a RuleSession is reused for more than one request, then all Single Pass Sequential rule sets
will re-fire on each subsequent rule request that is submitted to the same RuleSession. The
following other "auto" rule types will re-fire only if the rule engine dependency network
determines that some data change should cause them to re-fire:

Sequential Rule Sets

Optimized Rule Sets

Calculations

Classifications

Constraints

Advanced Control over Rule Firing using Activation Settings

An advanced technique to control the firing of auto rule sets during rule execution is to employ
an Activate/Deactivate pattern. This pattern can rely on the Activate Rule Set and Deactivate
Rule Set actions in irAuthor, or rule sets can be activated and deactivated with code using irSDK.

When a rule set is activated it is added to the processing agenda of the rule engine so it is
available to fire. When it is deactivated, it is removed from the agenda so that it will not fire. The
rule author can control which "auto" rules are available for consideration at any point during rule
processing by toggling the activation settings of rule sets.

Notes on activating or deactivating rule sets:

Rule sets can be assigned to one or more 'Categories'. InRule contains actions for Activate/
Deactivate by Category so that a rule author can activate or deactivate many different rule
sets simultaneously based on the categories that are assigned to the rule sets.

Explicit Rule Sets (which include Independent Rule Sets) also have properties for activation/
deactivation. However, the rule compiler will not accept explicit rule sets as targets of
activation or deactivation rules.

Date of Publication: 3/22/2021

Implementation Guide 173

Rule sets also contain a property for 'Enabled' which should not be confused as having similar
functionality as 'Activated'. The 'Enabled' property cannot be controlled via irSDK or via
irAuthor during rule execution. If a rule or rule set is not Enabled, it will not be included in
the compiled rule application and will not be accessible in any way at runtime.

Step 6 - Consume Rule Engine Output

Once rule execution is complete the data that was passed into the rule engine is available for use
elsewhere in the application. In the case of object instances, the actual object graph will be kept
in sync during execution by the rule engine. XML or JSON data must be explicitly retrieved from
the session.

In addition to the updated state data, the following are some of the more commonly used
mechanisms to facilitate communication from the rule engine to the host application:

Notifications - Messages generated by the Fire Notification action

Validations - Error messages associated with a specific field or entity that are fired by the
Mark Field Invalid action or constraints

Rule Execution Log - The log contains execution information such as when there are state
changes, which rules were fired and other runtime details

Trace - If tracing was turned on in code, the trace file can be saved for review in irAuthor
after execution completes. Please note that tracing is resource intensive and can
significantly slow rule execution -- sometimes by more than a factor of ten. It is
recommended that rule tracing is enabled only as needed, and not for every rule
execution request. It is not recommended to use tracing for production
applications.

5.1.3 Service-Oriented Rule Architectures

Using InRule with Service-Oriented Architectures (SOA)

Due to the flexibility of the InRule SDK and the .NET framework, InRule can be configured to run
in a vast array of possible application architectures. However, many customers today consider
business rule processing to be an enterprise service, with the same service being available to
many disparate systems. A single rule processing service may be required to process rules for
many different business problems against many different data schemas. A platform-agnostic
service interface and expose rule execution to many other platforms built on various technology
stacks.

With InRule, it is possible to easily create a "generic" service interface using WCF or Web APIs
that can accept and return many different data schemas. In addition, this service can accept
input that denotes which rules should be run against a given set of data. A service with this
interface is then capable of reuse across many different business problems and potential calling
applications.

Most reusable services have some basic requirements to be considered "enterprise" services, all
of which are accommodated by the WCF or Web API services approach and the free-threaded
capabilities offered by InRule:

High availability
Scale-out easily as demand grows, without changing code
Multi-threaded request handling

Note that InRule does offer stateful rule processing as part of the rule session, but most rule
services are designed to be stateless so that each rule request is completely independent of
every other rule request. In the stateless scenario, a rule session is only used for a single
request and then discarded. The stateless architecture offers far more flexibility for scale-out and
declarative deployment, and is therefore recommended over stateful approaches wherever
possible.

A sample SOA for Business Rule processing.

Date of Publication: 3/22/2021

InRule Developer Help174

Stateless rule service requests are spread across one or more identical rule processing servers.

5.2 Application Architectures

Overview

This section contains examples of common architectural patterns that are used with InRule
implementations. Please be aware that many other configurations are possible.

Rule Services - The most typical approach used to integrate InRule. A custom developed web
service exposes rule execution to multiple consuming applications and user interfaces

Web Applications - Typical web application with InRule running locally on each web server in a
farm

ESB and Messaging - Using InRule as an endpoint for an Enterprise Service Bus, where many
disparate systems may reuse a rule service by passing messages to the service

Job Scheduling and Batch Processing - Running rules against large volumes of data

Desktop and Disconnected Applications - Running rules locally on desktops, laptops, or
Windows tablets, even when disconnected from the enterprise network

Date of Publication: 3/22/2021

Implementation Guide 175

5.2.1 Rule Services

Running Rules from a reusable service layer

Key Points

Rule execution occurs only on the Business Rule Server(s)

Rule execution can scale-out with demand by spreading load across a server farm

A single, generic, rule-processing web service interface can be reused for many different
business problems

Many different consuming applications and platforms can reuse the same rule-processing web
service interface

State is passed in the request and the response usually contains modified state and/or related
messaging

Rule engine instances are created using irSDK code within the .NET web service

Business Rule Servers pull a fresh copy of the rules only as needed from the irCatalog Server

Multiple Business Rule Servers can use a single irCatalog Server

For smaller-scale implementations, the Catalog can be hosted on a Business Rule Server

In scale-out and high-availability scenarios, a load balancer can be used to spread requests
across a farm of servers

Running Rules with a Service-Oriented Architecture

Scaling-out the Service-Oriented Architecture to meet growing demand

Date of Publication: 3/22/2021

InRule Developer Help176

5.2.2 Web Applications

Running InRule from a Web Application In-Process

Key Points

Rule Execution occurs on the web server(s)

The rule engine is instantiated using irSDK code within the .NET web application

Web servers can be load-balanced in a server farm

Each web server pulls a fresh copy of the rules from irCatalog only as needed via the
irCatalog Service

A single irCatalog server can be used to support multiple web servers

irCatalog may also be hosted on the same server as the web application

Date of Publication: 3/22/2021

Implementation Guide 177

5.2.3 ESB and Messaging

Integrating Service-Oriented Business Rule Execution with an Enterprise Service Bus

Key Points

Many ESB implementations require complex business rules to be integrated across several
disparate systems

Rule execution occurs only on the Business Rule Server(s)

Rule execution can scale-out with demand by spreading load across a server farm

A single, generic, rule-processing endpoint can be reused for many different types of
messages for many different business problems

XML or JSON state is passed in the request and the response usually contains modified state
and/or related messaging

In scale-out and high-availability scenarios, a load balancer can be used to spread message
requests across a farm of servers

InRule can be used to call back into other resources exposed by the service bus

Date of Publication: 3/22/2021

InRule Developer Help178

5.2.4 Job Scheduling and Batch Processing

Batch Processing with Rules

Key Points

Job scheduler or batch processing application aggregates rule requests (initiated on a
schedule or by a user)

Requests are queued for rule processing

Batch processing application spreads requests across a farm of business rule servers

Stateless requests are multi-threaded across many servers and processors, lowering overall
batch processing time

Many solutions benefit from tools that help manage job scheduling, such as Quartz.NET

Date of Publication: 3/22/2021

Implementation Guide 179

5.2.5 Desktop and Disconnected Applications

Running Rules locally on a desktop, laptop, or Windows device

Key Points

Rule execution occurs on each client machine, with no requirement for a network connection

The rules are stored on each machine as a small file

The client application can use irSDK code to pull the latest copy of the rules from irCatalog
when the machine is connected to the network.

An instance of the rule engine is instantiated using irSDK code within the client application

Date of Publication: 3/22/2021

InRule Developer Help180

A possible application architecture for a desktop Windows EXE that executes rules

5.3 Common Integration Scenarios

Overview

This section contains some sample approaches for implementing InRule on common technology
stacks that are used with .NET applications. Please be aware that many other configurations are
possible.

Web Services (WCF)

ASP.NET MVC

Date of Publication: 3/22/2021

Implementation Guide 181

BizTalk

Microsoft® Dynamics® CRM

SharePoint

Entity Framework

Enterprise Rule Services

5.3.1 Web Services

Rule integration with Rules from a reusable service layer

Key Points

WCF or Web API Service that hosts rule execution SDK code

This is the most popular approach used to integrate InRule with customer applications

A specialized interface can be provided for a specific business problem, or a generic interface
can support many different sets of rules with many different data schemas

Rule execution can scale-out with demand by spreading load across a server farm

Many different consuming applications and platforms can reuse the same rule-processing web
service interface

IIS supports robust, configurable multi-threaded rule request processing

InRule includes generic out-of-the-box SOAP and REST execution services (irServer® Rule
Execution Service) with irServer that may be applicable for some solutions

InRule provides a code sample for a generic REST execution service that can be customized
to meet requirements for most solutions

A possible application architecture for a Web Service that executes rules

Date of Publication: 3/22/2021

InRule Developer Help182

5.3.2 ASP.NET MVC

Integration with ASP.NET MVC web applications

Key Points

InRule can run in-process on web servers

In typical "layered" architectures, business logic is separated into its own component

InRule can bind directly to .NET types, including types generated by the Entity Framework

InRule can be used for data validation, and complex business logic operations

Using an ASP.NET MVC web application as an in-process host to execute rules

Date of Publication: 3/22/2021

Implementation Guide 183

5.3.3 BizTalk

InRule with BizTalk

Key Points

BizTalk provides a robust framework for batch processing and reliable messaging. However,
many back-end processes require complex business logic for validation or transformation

InRule ships with an adapter for BizTalk that can run within a BizTalk Host Instance

InRule also ships with a DLL that can be called from a transform shape directly in an
orchestration. Note that this approach is only suggested when rule request sizes are small (<
100K XML) and have short execution times (< 250 ms).

For more advanced and scalable deployments, InRule can be hosted in a WCF service on a
server farm, and process BizTalk messages sent using the web service adapters

BizTalk message processing using the InRule adapter for BizTalk

BizTalk message processing using an external, scalable Business Rule Server farm

Date of Publication: 3/22/2021

InRule Developer Help184

A sample BizTalk orchestration that processes health care claims. The rule engine is
sent a message to perform complex business logic comparisons and calculations to
ensure claims are valid.

5.3.4 Dynamics CRM

Rule integration with Microsoft® Dynamics® CRM and rules from a reusable service layer

Key Points

InRule has code samples available that demonstrate execution of rules against CRM entities

For most on-premise scenarios, a light-weight plugin can run inside the Microsoft® Dynamics®

365 Sandbox and call a service that runs rules in a different process

For on-line scenarios, a similar light-weight plugin approach can be applied when using CRM

Date of Publication: 3/22/2021

Implementation Guide 185

Service Endpoints and the Microsoft® Azure® Service Bus

For out-of-process, cloud, and AJAX scenarios, a REST web service approach offers a simple,
re-usable interface to process rules against CRM entities

Using the sample light-weight Sandbox Plugin code with REST service for InRule integration

with Microsoft® Dyanmics® 365

For Microsoft® Dynamics® 365 Online, a sandbox plugin can use the Microsoft® Azure®

Service Bus to execute rules using a Microsoft® Azure® worker role

Date of Publication: 3/22/2021

InRule Developer Help186

5.3.5 SharePoint

InRule for SharePoint

Key Points

InRule can be called from event handlers and workflows

Web components such as WebParts, and farm Pages can call InRule using code-behinds and
AJAX

Advanced implementations can include a reusable rule service that can be called the same
way from many different SharePoint components

InRule versions 4 and later requires the .NET 4 framework or later. Due to this limitation,
InRule v4 cannot run in-process with SharePoint versions older than 2013. InRule suggests
integrating with SharePoint using a set of out-of-process web services.

Date of Publication: 3/22/2021

Implementation Guide 187

5.3.6 Entity Framework

Integration with Entity Framework and Object Relational Mappers (ORMs)

Key Points

InRule entity schema is driven from .NET POCO objects written by hand or generated by
coding tools

Rules can operate directly against Entity Framework entity types that can be passed directly
back to a data context after rule operations are completed

Provides an efficient approach when rule application schemas must closely model database
schemas- Entity Framework objects can be generated to match database table structures and
then imported directly into rules

Use the .NET Data Context for the most efficient approach for loading and saving entity data

The Entity Framework default data operations can be overridden with stored procedures or
custom SQL when the rule schema will not exactly match the data schema

InRule Execute SQL Query actions can be used to query record sets and populate entity
collections

Any 1-to-Many relationships may be expressed using property types that implement IList,
IList<T>, ICollection<T> or IEnumerable<T> interfaces

Using the Entity Framework to provide a schema and application data with rules that
are stored in irCatalog

Date of Publication: 3/22/2021

InRule Developer Help188

5.3.7 Enterprise Rule Services

Enterprise Rule Services

Key Points

Many enterprises consider creating a set of atomic services that can be combined for various
permutations of business processes and consuming application clients.

Create business logic services that run InRule in-process using REST or SOAP interfaces.
These custom rule execution services can conform to enterprise standards for interface,
security, logging, and wire protocols.

A specialized interface can be provided for a specific business problem, or a generic interface
can support many different sets of rules with many different data schemas

Rule execution can scale-out with demand by spreading load across a server farm, and can
be hosted on premise or in the cloud

Using REST or simple SOAP interfaces, other enterprise services can call into business logic
services, or business logic services can consume other services during rule execution

Date of Publication: 3/22/2021

Implementation Guide 189

5.4 Rule Deployment

As changes are made to rule applications, the changes need to be managed across development,
testing, and production environments. Each InRule implementation should include a well-thought
strategy for propagating rule changes with predictable processes. Although the flexibility of the InRule
SDK and rule application file formats allows for many possible strategies, InRule suggests the
following standard approaches for rule life-cycle management.

Rule Management with Multiple Catalogs

Rule Management with Labels

Rule Management Hybrid

Date of Publication: 3/22/2021

InRule Developer Help190

Rule Management with Files

The physical design of the irCatalog deployment should be considered along with the logical design
for maintaining rules. Two possible approaches are described in the pages below.

Catalog Deployment with Co-located Services

Catalog Deployment with Separate Servers

.

5.4.1 Rule Management with Multiple Catalogs

Multiple Catalogs for the Rule Development Life Cycle

Each environment requires an independent copy of the Catalog web service and database

Rule changes can be propagated using the promotion feature in the Catalog Manager

Rule changes can also be propagated using the promotion method in the InRule SDK

If elements are shared in development, the sharing links are not maintained across catalog
instances

Multiple rule authors can edit the same rule application concurrently

Rule changes can be hot-deployed from the Catalog web service without restarting production
application

Production application is dependent on stability of production Catalog web service and
database

Full rule application revision audit trail is available in each environment

Date of Publication: 3/22/2021

Implementation Guide 191

Promotion is intended to run in a linear path, such as Development to QA to
Production, as in this example. Backward or circular promotion paths are not
supported.

5.4.2 Rule Management with Labels

Using Revision Labels to Manage the Rule Development Life Cycle

All environments share a single copy of the Catalog web service and database

Rule changes can be propagated by assigning labels to rule application revisions in irAuthor
or with irSDK

If elements are shared in development, they are also shared in QA and Production

Multiple rule authors can edit the same rule application concurrently

Rule changes can be hot-deployed to the Catalog web service without restarting production
application

Production application is dependent on stability of the shared Catalog web service and
database

Full rule application revision audit trail is available in each environment

Date of Publication: 3/22/2021

InRule Developer Help192

.

5.4.3 Rule Management Hybrid

Using the Catalog only in Development for the Rule Development Life Cycle

The Catalog is used in development and the file system is used for rules in other
environments

Only one Catalog web service and database instance is required, for use by the development
environment

Rule changes can be propagated by downloading rules from the catalog web service and then

Date of Publication: 3/22/2021

Implementation Guide 193

saving to the file system in other environments

Multiple rule authors can edit the same rule application concurrently

Rule changes can be hot-deployed from the production file system without restarting
production application

Production application is not dependent on stability of the Catalog web service and database

Audit trail for rule changes is only available in development

A simple, custom-coded component may be required for integration with automated build
processes or continuous integration

.

5.4.4 Rule Management with Files

Using the File System for the Rule Development Life Cycle

Date of Publication: 3/22/2021

InRule Developer Help194

No Catalog components are required (using a source control system is highly recommended)

Rules are managed the same way as any other application source file

Rule changes are propagated by copying rule application files across environments

Only one rule author can edit the same rule application concurrently

Rule changes can be hot-deployed from the production file system without restarting
production application

Production application is not dependent on stability of the Catalog web service and database

Audit trail for rule changes is limited to whatever 3rd party source control system provides
and is only available in development

A simple, custom-coded component may be required for integration with automated build
processes or continuous integration

.

5.4.5 Catalog Deployment with Co-located Services

Deploying the Catalog using the same servers as Rule Execution

Catalog Services can reuse hardware and VMs that have been deployed for Rule Execution

All Catalog Services are configured to point to the same rule catalog database using
configuration files

Each instance of the Rule Execution service is configured to point to the Catalog Service
instance that is co-located on the same machine

Date of Publication: 3/22/2021

Implementation Guide 195

For IIS deployments, InRule suggests hosting the co-located Rule Execution and Catalog
Services in separate Application Pools

Load balancer passes requests across HTTP rule execution services

.

5.4.6 Catalog Deployment with Separate Servers

Deploying the Catalog using Separate Servers for irCatalog

Catalog services are scaled and maintained on a separate set of servers

The Catalog usually does not need to scale out due to performance concerns, but instead to
provide high availability

The Rule Execution load balancer passes requests across HTTP rule execution services

All Rule Execution services are configured to point to the same Catalog load balancer URL

All Catalog servers are configured to point to the same rule database using configuration files

Separate Catalog servers may require separate license activations

Date of Publication: 3/22/2021

InRule Developer Help196

.

5.5 Performance Tuning and Best Practices

Overview

This section contains additional miscellaneous information about product configuration,
performance tuning, and best practices.

Multi-threaded Rule Execution

Cold Start Mitigation

Managing the RuleApp Cache

Event Log

Rule Engine Execution Log

Hosting the Catalog on IIS vs Windows Services

5.5.1 Multi-threaded Rule Execution

In high-volume applications that make numerous calls to the rule engine, using a multi-threaded
approach can help achieve better overall performance for batch processing. Take the following
scenario as an example:

A data transformation application processes approximately 100,000 records with InRule every
night as a batch

Date of Publication: 3/22/2021

Implementation Guide 197

The application will run on a machine that has more than two processing cores

The InRule rule engine and catalog are designed for free-threaded execution. In the free-threaded
model, memory caches are reused between rule engine instances running in different threads, which
can lower the overall memory footprint and execution times for an application.

When InRule is run on multiple threads, the owner process can execute rule engine requests
concurrently. Each processor core shares the load in processing rules, which can produce an overall
execution time that is significantly lower than if the entire batch was executed serially in a single
thread on a single core.

With any multi-threaded application, there is an inherent performance overhead incurred for each
new thread that is introduced into the process. With a .NET application, this overhead can be
exacerbated by the need to periodically run garbage collection across a heap of memory that is
shared between threads. During garbage collection, the .NET runtime blocks executing threads so
that the memory heap can be examined and cleaned in a thread-safe manner.

Since InRule is built from the ground-up in .NET, it experiences the same scalability concerns
inherent with any .NET application that must work with a large number of .NET objects. In many
cases, adding more concurrent execution threads beyond one thread per core to these types of
applications will not improve overall performance.

Threading Guidelines:

Given that each rule application is unique with respect to both the complexity and depth of its
schemas and rulesets, it is difficult to make a blanket statement about the best threading model to
use for all applications that are running the rule engine. Applications with a large number of rules
may perform better when more threads are added, while large state models may quickly reach a
point of diminishing returns as new threads are added.

Although optimal threading models vary greatly between applications, the following guidelines are
presented as general best-practices:

Use a maximum of one rule execution thread per processor core -- InRule is
processor intensive, so adding more threads beyond one per core generally does not help
performance. In addition, a large number of threads may increase contention for memory
caches and garbage collection thereby degrading performance.

Run services under IIS instead of a Windows Service -- IIS has optimized request
handling for large numbers of requests across threads.

Set the Garbage Collection mode for the .NET runtime to "gcServer" -- By default
the .NET runtime will use "gcWorkstation", which optimizes garbage collection for UI
applications and UI background threading. The "gcServer" is recommended for machines that
have more than two logical processors and will be running free-threaded applications. By
default an IIS install should already have processes set to use gcServer, but this setting may
need to be manually adjusted for other .NET applications. For more information about
adjusting this setting in a .NET configuration file, see .NET Framework Runtime Config
Settings With InRule. More information about garbage collection modes is available from
Microsoft on-line at https://msdn.microsoft.com/en-us/library/ms229357.aspx.

Run performance load tests before deploying to production -- To ensure that
production load requirements are met, run soak tests on similar hardware to better anticipate
real production throughput. Adjust threading models to optimize for the highest throughput.

Scaling across cores does not correlate to a linear improvement in performance
-- The application overhead of running on more than one processor results in some loss of
throughput as each new thread is included. For example, running an application on two
threads may result in an overall improvement of 1.9 times instead of a linear factor of 2.0.
This overhead increases as more cores are included, so that an application running on four
cores may only show a factor of 3.5 times improvement over one thread on one core. Since
each rule application can include a vastly different combination of rules an schema objects,
these scalability factors can vary between implementations.

Scale "out" is preferred over scale "up" -- To make the most efficient use of hardware,
InRule suggests no more than eight physical cores per server. If rule processing demand
exceeds the capacity of four to eight cores, then the option of configuring multiple four or

https://msdn.microsoft.com/en-us/library/ms229357.aspx

Date of Publication: 3/22/2021

InRule Developer Help198

eight core servers in a farm should be explored before using a server with more than eight
cores. A four-core server is considered the ideal sizing for most applications.

Configuration of IIS for Multi-Threading:

Given the popularity and robust nature of IIS on Windows Servers, many InRule implementations are
hosted as services or applications running in IIS Application Pools. Each IIS AppPool contains
AppDomains with .NET memory heaps. If too many threads are running against the same shared
memory heap, then the application may experience a drop in throughput due to contentions. When
running under IIS, the following guidelines may help optimize throughput:

Scale out physical servers over eight cores -- If not using virtual machines, then load
should be spread across physical servers that have a maximum of eight cores.

Use multiple VMs with a smaller number of cores assigned to each VM -- If a
hypervisor is available, run multiple VMs with two, four, or eight cores assigned to the VM.
Spreading the load across multiple VMs generally results in less performance loss due to
thread contention.

If the number of servers is limited, enable "web gardens" in IIS -- Each Application
Pool in IIS can be configured to run as one or more processes (the default is one). By setting
the Maximum Worker Processes to greater than one, IIS with spread the request load across
more than one process, which in turn spreads the load over more than one shared memory
heap. This may help reduce threading contentions and improve throughput. Note that when
more than one worker process is used, there is a significant increase in fixed memory cost,
since each process must maintain a separate set of shared InRule caches.

5.5.2 Cold Start Mitigation

Rule Engine Cold Start

The first time a rule application is retrieved and executed, it must be compiled and loaded into
memory. The time it takes for this process to complete is commonly referred to as the cold start.
The cold start time will vary depending primarily on the size of the rule application. After the initial
cold start, performance will more adequately represent normal rule engine execution performance.

Mitigating the cold start

A common practice for mitigating the cold start is to force the rules to compile before an end user
makes a request for the rule application. This can be achieved when the application or service is
loading.

The following SDK code options will force the rule application to begin compile:

1. The first creation of a InRule.Runtime.Entity

// Create rule application reference and a dummy Entity -- this performs
a Metadata compile, but not a Function compile
var ruleApp = new FileSystemRuleApplicationReference(@"C:\RuleApps
\MyRuleApplication.ruleappp");

using (var session = new RuleSession(ruleApp))
{
 session.CreateEntity("MyEntity");
}

Date of Publication: 3/22/2021

Implementation Guide 199

2. Proactively call the Compile method on the RuleApplicationReference

// Create rule application reference
var ruleApp = new FileSystemRuleApplicationReference(@"C:\RuleApps
\MyRuleApplication.ruleappp");

// Force a Metadata compile - Function compile will still occur
incrementally and on-demand
ruleAppRef.Compile(CompileSettings.Create(EngineLogOptions.Execution));

Note: When performing a pre-compile as demonstrated above, it is important to set the

LogOptions in the CompileSettings to the same value that will be used for execution. If
the settings do not match, the first execution will include additional compile time.

There are two main steps to complete a full compilation of a rule application in InRule:

Metadata Compile - Includes compile of the schema, endpoints, and lists along with rule
validation

Function Compile - Includes compile of rules and state access delegates

By default, the Metadata Compile is always completed the first time a rule application is used by a
RuleSession or an explicit call is made to the RuleApplicationReference.Compile method. The
Function Compile occurs incrementally and on-demand the first time a particular rule or state
accessor is required by a particular rule execution request. In some scenarios, it may be desirable to
force the entire Function Compile to occur upfront. To enforce a full upfront compile of a rule
application, explicitly pass a CompileSettings instance to the call to
RuleApplicationReference.Compile. See the code sample below:

// Create rule application reference
 var ruleApp = new FileSystemRuleApplicationReference(@"C:\RuleApps
\MyRuleApplication.ruleapp");

// Force a full Metadata and Function compile
 ruleApp.Compile(CacheRetention.Default,
CompileSettings.Create(EngineLogOptions.None));

There are various techniques for masking cold start mitigation in your rules-enabled application.
Following are some of the more commonly used techniques when adding the cold start mitigation
code to the 'on load' or 'on start' events of your application:

Handle the cold start with an asynchronous worker.

Display a splash screen if dealing with an end-user application.

Consider disabling buttons or links that engage rule execution until the cold start mitigation is
completed.

For services, consider adding the above mentioned code to an event when the service is
started (e.g. APPLICATION_ONSTART, IProcessHostPreloadClient).

For ASP.NET or WCF applications, implement a startup routine in the Global.asax file.

Use IIS or Windows Server AppFabric to auto-start services after an Application Pool is
recycled

Helping minimize cold start with XmlSerializers

The first time rules are applied in a given AppDomain, the .NET XmlSerializer will attempt to create a
temporary XML serializer assembly to perform an XML deserialization of a rule application. Once the
temporary serializer assembly is generated and compiled, it is reused for the life of the AppDomain.
The time to generate the serializer assembly can be significant, and can avoided by deploying a pre-
built assembly that InRule provides as part of irSDK. The file named
InRule.Repository.XmlSerializers.dll should be copied into the working directory of an application that
is consuming InRule to avoid playing the cold start times for regenerating this XML serializer
assembly for each new AppDomain.

Date of Publication: 3/22/2021

InRule Developer Help200

Configuring IIS to minimize unanticipated cold starts

When InRule is hosted inside of an IIS worker process, it is important to note that IIS has built-in
features that will occasionally recycle the worker process. Each time the process is recycled, all of
the InRule AppDomain caches are also recycled, and cold start costs due to loading assemblies and
compiling rule applications must be repaid. Two settings that affect automatic recycling of IIS
application pools are the "Idle Time-out" and "Regular Time Interval". Both of these settings should
be set to "zero" to avoid regular recycling of the process that is hosting both the InRule rule engine
and the irCatalog. The screen shot below shows an example of configuring these settings using the
IIS application pool Advanced Settings screen.

Date of Publication: 3/22/2021

Implementation Guide 201

Configuring Rule Compilation to use a Background Thread

When using irCatalog, the rule engine can be configured to check for latest rules and compile rules in
a background thread. The background thread compilation can help ease threading contention for
applications that use multiple rule applications.
The background thread compilation feature is only available for applications that are integrated with
irCatalog. The background thread is enabled by passing a Boolean flag into the constructor of the
CatalogRuleApplicationReference. See the code sample below:

Date of Publication: 3/22/2021

InRule Developer Help202

// Passing true for the last argument in the constructor will enable background
compilation
var ruleApp
= new CatalogRuleApplicationReference("MyBackgroundCompiledRuleApp", true);

5.5.3 Managing the Rule Application Cache

Rule Application Cache Characteristics and Significance

When a rule application is loaded for first time execution, the rule application is compiled and then
cached in the AppDomain. Subsequent requests for the rule application will pull from the AppDomain
cache, providing faster access to the rule application. The compile and caching process is sometimes
referred to as the cold start.

Note: When calling the rule engine as a service (either with SDK, proxy objects or a custom service
wrapper), the "client" will be the service itself.

Additional Information

The FileSystemRuleApplicationReference, CatalogRuleApplicationReference and
InMemoryRuleApplicationReference all leverage caching.

Each rule application type will check to see if there have been changes made to the rule
application (or if there is a new revision of the rule application in the case of the
CatalogRuleApplicationReference) and will recompile and cache the rule application if there
are changes.

By default, 5 rule applications will be stored in the cache. To modify the the cache size, see
Compiled Application Cache Depth

Any time the AppDomain shuts down (e.g. IISReset or AppPool settings such as Recycling or
Performance settings), the cache is cleared.

Methods are available on the SDK to support advanced scenarios that require custom
management of the rule application cache. Please see the SDK file help sections Managing the
Rule Application Cache and Controlling Compilation and Cache Retention for more details.

Catalog Specific Caching Behavior

When a rule application is pulled from the Catalog, it is cached on the client, not the Catalog
Service.

When a rule engine request executes and the rule application is not in the cache, it is pulled
from the Catalog. It is then compiled and saved in the cache for a given "refresh interval".

If the refresh interval has expired, a lightweight poll to the Catalog is performed when the
next RuleSession is created to determine whether a newer revision of the rules exists. If a
newer revision does not exist, the cached Rule Application is reused.
If the Rule Application is in the cache, then the cached version is always reused until the
refresh interval expires. The default refresh interval is 30 seconds. The refresh interval can
be overridden by calling the SetRefresh method on the CatalogRuleApplicationReference. See
the example below:

// Instruct the engine to work with the latest version of the rule application
var ruleApp = new CatalogRuleApplicationReference("MyRuleApp");

// Override the default refresh interval to check for latest rule version from
30 seconds to 10 minutes
ruleApp.SetRefresh(TimeSpan.FromMinutes(10));

To prevent the main thread from blocking while the Catalog is polled and the latest revision of
the Rule Application is compiled, the poll and compile may be performed on a background

Date of Publication: 3/22/2021

Implementation Guide 203

thread while the main thread continues to use the previously cached revision of the Rule
Application:

// Instruct the engine to work with the latest version of the rule application,
but check for a new revision on a background thread after the refresh interval
has expired
var ruleApp = new CatalogRuleApplicationReference("MyRuleApp", true);

5.5.4 Event Log

Windows Events and File Logging

During rule execution, InRule will attempt to log events to either the Windows Event Log or a file-
based logger. The amount and granularity of the event logging is controlled by settings exposed in
the .NET configuration file for the process that is hosting InRule.

The InRule Configuration Wizard or the xcopy License Activation Tool can be used to register a
Windows Event Log category on a given machine. If this category is available, then InRule events will
be logged there. If the InRule event log category is not available, then events will be logged to the
Windows Application log.

The InRule Category in the Windows Event Log

As a best practice, the InRule.Logging section should be included in the *.config file of any process
that is consuming InRule. If this section is defined, then logging levels can be toggled quickly by
adjusting the value of the "level" attribute in the config file. For more information regarding
configuration of InRule event logging, please see the SDK help file page InRule Logging Config File
Settings. Note that if the log level is set to "Info", then the rule engine will log a light-weight summary
event each time the rule engine is invoked. These summary events contain information about
threading, execution times, and memory use. Some InRule implementations benefit from "info" level
logging even in production, as these summary events can be reviewed to detect trends in
performance and usage.

Date of Publication: 3/22/2021

InRule Developer Help204

The InRule ROAD Services team has in-house tools available that can parse "info"-level log events.
Below is a sample graph depicting execution times for concurrent request execution across many
threads. The info level log approach can help identify and diagnose anomalies such as the
unexpected spike shown in the sample.

A Sample Graph of "info"-Level Log Data-- Helping to Identify an Anomaly

.

5.5.5 Rule Engine Execution Log

Execution Log

The Execution Log provides the ability to get different types of feedback from the rules engine
depending on the needs of the application. The EngineLogOptions class governs what type of
information will be collected during execution and made available through the SDK. For performance
sake, the default setting will not capture any information, providing the fastest possible execution.
Developers can then opt into the settings that they require. The available settings are listed below
along with what each setting is used for.

Option Description

None Default. Disables InRule.Runtime.RuleExecutionLog messages, value
changes, statistics and InRule.Runtime.Tracing.IExecutionTrace
generation

Execution Enables text feedback messages and rule changes on the
InRule.Runtime.RuleExecutionLog. This includes RuleSet, Rule and Action
execution messages.

StateChanges Enables state changes on the InRule.Runtime.RuleExecutionLog, including
calculations.

SummaryStatisi
cs

Enables summary statistics in InRule.Runtime.RuleExecutionLog and
InRule.Runtime.RuleSession. Required for summary level information for
Performance Statistics report.

DetailStatistics Enables detailed statistics in InRule.Runtime.RuleExecutionLog. This
enables RuleSet, Rule and Action timings. Required for detail level
information for Performance Statistics report.

RuleTrace Enables InRule.Runtime.Tracing.IExecutionTrace generation. This is
accessible from InRule.Runtime.RuleExecutionLog.GetExecutionTrace().

Date of Publication: 3/22/2021

Implementation Guide 205

Note: While rule tracing is extremely useful for debugging rule execution,
it degrades performance significantly and is not intended to be used in
production environments.

RuleValues Enables rule values to be captured so that they can be accessed using the
SDK. Adding this flag increases memory consumption and reduces
performance.

When this option is off, attempting to access certain rule values or
execution counts for a child element from the SDK will result in an
IntegrationException, which will be one of the following error codes:

SDKRuleValuesCanOnlyBeAccessedWhenStoringRuleValues
SDKRuleExecutionCountCanOnlyBeAccessedWhenStoringRuleValues

The EngineLogOptions is a flag enumeration, allowing multiple options to be specified for a single call
as shown below:

ruleSession.Settings.LogOptions = EngineLogOptions.Execution |
EngineLogOptions.Changes;

Availability

The RuleExecutionLog is available as the return value from both the RuleSession.ApplyRules() and
Entity.ExecuteRuleSet() methods. It is also available from the RuleSession.LastRuleExecutionLog
property.

Please see the SDK help file section Retrieving and Processing the RuleExecutionLog for more details.

5.5.6 Hosting irCatalog on IIS vs Windows Services

Background

During setup and installation of the irServer components, irCatalog, and irServer Rule Execution
Service, the installer can choose to host the component services on IIS or as a Windows Service.

Managed Windows Services

This option registers the WCF service as a managed Windows Service. Key benefits and limitations of
managed windows services are as follows:

Lifetime of the service process is controlled by the operating system and is not message
activated.

Most versions of Windows support managed Windows Services

IIS

IIS is recommended as the preferred approach for hosting InRule in service applications. Key
benefits and IIS are noted below:

Process recycling and health monitoring

Message-based activation

Built-in request throttling

Built-in thread pooling and request queuing

As detailed in the InRule Installation Help File, InRule generally recommends IIS service types for
irCatalog and irServer Rule Execution Service because of the built-in failover, queuing,
administration, deployment, and scalability capabilities, as well as additional configuration options.

Date of Publication: 3/22/2021

InRule Developer Help206

Date of Publication: 3/22/2021

Source Code Examples

Part

VI

Date of Publication: 3/22/2021

InRule Developer Help208

6 Source Code Examples

For most rule engine implementations, it is a common scenario to integrate with one or more end
business applications or processes. InRule provides an extensive developer API (irSDK) to
incorporate the decisions and actions authored in the rule application to drive the processes within an
end business application.

These examples describe the methods and techniques to perform many of the common functions
used by a typical rule-enabled application. The following topics are covered in this section:

Runtime API Examples

The InRule Runtime API contains all of the objects and methods used to load data, execute rules,
process results, and work with rule application metadata.

Authoring API Examples

The InRule Authoring API (also referred to as the Repository SDK) spans two functional areas:
developing against the RuleApplicationDef model and embedding authoring controls.

 Catalog API Examples

The InRule Catalog API demonstrates how to retrieve and work with rule applications that are stored
in the InRule Catalog.

6.1 Runtime API Examples

The InRule Runtime API contains all of the objects and methods used to load data, execute rules,
process results, and work with rule application metadata.

Calling the Rules Engine - In Process

Basic Example of Calling the Rule Engine

Opening a Rule Application for Execution

Creating a RuleSession

Creating a RuleSession with Cache Retention

Creating Entities

Alternate ways to Load State for Entities

Retrieving Entity State

Working with RuleSessionState

Calling the Rules Engine as a Service

Sychronously calling the REST Service

Asychronously calling the REST Service with JSON

Asychronously calling the REST Service with XML

Calling the SOAP EndPoint using a Service Reference

Retrieving and Setting Fields and Entities

Retrieving an Entity from the RuleSession

Retrieving Fields

Setting Fields

Working with Collections

Date of Publication: 3/22/2021

Source Code Examples 209

Looping through a Collection

Adding a Member to a Collection

Resolving Field Types at Runtime

Executing Rules

Applying Rules

Applying Rules with an Activation Model

Executing Decisions

Executing an Independent Rule Set or Rule Flow

Checking For Notifications & Validations

Handling Exceptions

Runtime Settings

Retrieving and Processing the RuleExecutionLog

Retrieve the Performance Statistics Report

Retrieve the Performance Log

Working with the Rule Application Cache

Adding Items into the Cache

Managing the Cache

Controlling Compilation and Cache Retention

Iterating Items in the Cache

Working with Rule Application Metadata

Using the RuleApplicationDef Object

Retrieving Definition Objects at Runtime

Using Element Metadata

Working with Attributes

Working with Value Lists

Other

Launching irVerify or the StateViewer From Code

Overriding EndPoints at Runtime

Overriding DataElements at Runtime

Overriding Culture Settings at Runtime

Rule Tracing Input and Output Using RuleSession

Working with the Trace Viewer Through irSDK

Executing a Simple Test Suite

6.1.1 Calling the Rules Engine - In Process

Calling the Rules Engine - In Process

Basic Example of Calling the Rule Engine

Opening a Rule Application for Execution

Creating a RuleSession

Creating a RuleSession with Cache Retention

Date of Publication: 3/22/2021

InRule Developer Help210

Creating Entities

Alternate ways to load state for Entities

Retrieving Entity State

Working with RuleSessionState

6.1.1.1 Basic Example of Calling the Rule Engine

Prerequisites: None
Namespaces: InRule.Runtime, InRule.Common.Exceptions
Classes: FileSystemRuleApplicationReference, RuleSession, Entity, RuleException
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities, Applying Rules,
Handling Exceptions
References: InRule.Runtime.dll, InRule.Common.dll, InRule.Repository.dll

The following basic example demonstrates calling the rules engine to calculate the area of a
rectangle.

// Get the ruleapp from a file.
RuleApplicationReference ruleAppRef = new FileSystemRuleApplicationReference(@"C:
\RuleApps\Rectangle.ruleapp");

// Create a session to manage the rule engine request and response.
// The RuleSession should be disposed after use. This can be done with a "using"
statement or by explicitly calling Dispose
using (RuleSession session = new RuleSession(ruleAppRef))
{

try
{

// Create the "Rectangle" Entity defined in the rule application schema
and set the values using xml.

Entity rectangle = session.CreateEntity("Rectangle",
@"<Rectangle><Height>2</Height><Width>3</Width></Rectangle>");

// Apply the rules to calculate the area of the rectangle.
session.ApplyRules();

// Get the state and results as XML
string resultsXml = rectangle.GetXml();

}
// catch RuleException, base class for all InRule Exceptions
catch (RuleException ex)
{

Console.WriteLine(ex.ToString());
}

}

Note: There are specific InRule exceptions that can be caught, including Compiler, Runtime and
several other exceptions. See Handling Exceptions for samples. See RuleException Class for a
complete list of InRule exceptions.

Date of Publication: 3/22/2021

Source Code Examples 211

6.1.1.2 Opening a Rule Application for Execution

Prerequisites: None
Namespaces: InRule.Runtime
Classes: FileSystemRuleApplicationReference, InMemoryRuleApplicationReference,
CatalogRuleApplicationReference

InRule provides the ability to execute rules from the file system, catalog, or a rule application created
in memory.

FileSystemRuleApplicationReference

// Get the ruleapp from the file system.

RuleApplicationReference ruleAppRef = new FileSystemRuleApplicationReference("C:\

\RuleApps\\Invoice.ruleapp");

CatalogRuleApplicationReference

// The URI for the catalog service.
string Uri = "http://localhost/InRuleCatalogService/Service.svc";

// Get the ruleapp from the repository using the URI, Username, Password, and Rule
Application name.
CatalogRuleApplicationReference ruleAppRef = new
CatalogRuleApplicationReference(Uri, "CustomerInvoice", "Admin", "password");

// If you are using active directory, you only need the Uri and application name
ruleAppRef = new CatalogRuleApplicationReference(Uri, "CustomerInvoice");

// you can also specify a version e.g 2
ruleAppRef = new CatalogRuleApplicationReference(Uri, "CustomerInvoice", "Admin",
"password",2);

// Using a label for example PRODUCTION
ruleAppRef = new CatalogRuleApplicationReference(Uri, "CustomerInvoice", "Admin",
"password", "PRODUCTION");

// Using background version polling and recompilation after the refresh interval
has expired
ruleAppRef = new CatalogRuleApplicationReference(Uri, "CustomerInvoice", "Admin",
"password", "PRODUCTION", true);

InMemoryRuleApplicationReference

// Open an InMemoryRuleApplicationReference using the RuleApplicationDef object

// Used when you have a rule RuleApplicationDef object available in memory,

// for example when dynamically generating rule applications via the Repository

SDK.

RuleApplicationReference ruleAppRef = new InMemoryRuleApplicationReference

(ruleApplicationDef);

6.1.1.3 Creating a RuleSession

Prerequisites: A valid RuleApplicationReference
Namespaces: InRule.Runtime
Classes: RuleSession, RuleApplicationReference

Date of Publication: 3/22/2021

InRule Developer Help212

See Also: Retrieving a Rule Application, Creating a RuleSession with Cache Retention

The rule session object object that manages all of the rules engine request directives and execution
results. The rule session is used to load state, execute rules, and retrieve notifications, validations,
and the execution log.

// Create a session to the rules engine, passing in a RuleApplicationReference

RuleSession ruleSession = new RuleSession(ruleAppRef);

// Use of cache retention
RuleSession ruleSession = new RuleSession(ruleAppRef, CacheRetention.AlwaysRetain);

// Using Rule Application Definitions reference to create a rule session
RuleSession ruleSession = new RuleSession(ruleAppDef);

// Using Rule Application Definition that has been saved to file to create a rule
session
RuleSession ruleSession = new RuleSession(@"C:\temp\ruleAppDef");

6.1.1.4 Creating a RuleSession with Cache Retention

Prerequisites: A valid RuleApplicationReference
Namespaces: InRule.Runtime
Classes: RuleSession, RuleApplicationReference, CacheRetention
See Also: Retrieving a Rule Application, Adding items into the Cache, Controlling Compilation and
Cache Retention, Iterating items in the cache , Working with the Rule Application Cache

The rule session object object that manages all of the rules engine request directives and execution
results. The rule session is used to load state, execute rules, and retrieve notifications, validations,
and the execution log.

Cache retention controls how a session is stored in the cache

// Create a rule session with a rule application reference and
// specifying the cache retention
RuleSession ruleSession = new RuleSession(ruleAppRef, CacheRetention.AlwaysRetain);

// Create a rule session with a rule application definition reference and
// specifying the cache retention
RuleSession ruleSession = new RuleSession(ruleAppDef, CacheRetention.AlwaysRetain);

// Using Rule Application Definition that has been saved to file to create
// a rule session and specifying the cache retention
RuleSession ruleSession = new RuleSession(@"C:\temp\ruleAppDef",
CacheRetention.AlwaysRetain);

// Using the cache retention weight to control how an rule application will be kept
in the cache
// Higher values are more likely to be retained; Lower valies are less likely to be
retained

Date of Publication: 3/22/2021

Source Code Examples 213

// and therefore expired from the cache. 1000 is the default weight.
RuleSession ruleSession = new RuleSession(ruleAppRef,
CacheRetention.FromWeight(5000));

6.1.1.5 Creating Entities

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: Entity, RuleSession
See Also: Retrieving a Rule Application, Creating a RuleSession

For typical entity models, there is a top level entity that provides access to all fields, sub-entities, and
collections defined in the rule application. The alternative independent entity model approach
requires the use of Independent Rulesets.

Create blank Entity

//create a blank mortgage entity
Entity mortgageEntity = ruleSession.CreateEntity("Mortgage");

Create Entities with XML

// Create a mortgage entity with XML
Entity mortgageEntity = ruleSession.CreateEntity("Mortgage",@"<Mortgage>
 <LoanInfo><PropertyId>1</PropertyId><Principal>500000</Principal>
 <APR>6.875</APR><TermInYears>30</TermInYears></LoanInfo><PaymentSummary/
></Mortgage>");

Create the Entity model from a business object model

// Create a mortgage business object
Mortgage mortgage = new Mortgage();

LoanInfo loanInfo = new LoanInfo();
loanInfo.APR = 6.875m;
loanInfo.PropertyId = 1;
loanInfo.Principal = 500000;
loanInfo.TermInYears = 30;

mortgage.LoanInfo = loanInfo;
mortgage.PaymentSummary = new PaymentSummary();

Entity mortgageEntity = ruleSession.CreateEntity("Mortgage", mortgage);

Note: See also: Setting Fields examples

Note: In order to use object-based state, the rule application must first be bound to a .NET
assembly schema. See Binding to a .NET Assembly Schema in the main InRule Help file.

6.1.1.6 Alternate ways to Load State for Entities

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Date of Publication: 3/22/2021

InRule Developer Help214

Loading state from a file

// Load the state by passing in the path & filename.
mortgageEntity.LoadXml("Mortgage.xml");

Loading state from an XML string

// Load state from an XML string.

mortgageEntity.ParseXml("<Mortgage><LoanInfo><Principal>500000</Principal><APR>7</

APR><TermInYears>30</TermInYears></LoanInfo><PaymentSummary /></Mortgage>");

Manually wiring up an Entity

//create ruleapp entities
Entity mortgageEntity = ruleSession.CreateEntity("Mortgage");
Entity loanInfo = ruleSession.CreateEntity("LoanInfo");
Entity paymentSummary = ruleSession.CreateEntity("PaymentSummary");

//set loanInfo values
loanInfo.Fields["Principal"].Value = 250000;
loanInfo.Fields["APR"].Value = 5.25;
loanInfo.Fields["TermInYears"].Value = 30;

//associate loanInfo entity to an Mortgage entity field
mortgageEntity.Fields["LoanInfo"].Value = loanInfo;

//associate paymentSummary entity to Mortgage entity field
mortgageEntity.Fields["PaymentSummary"].Value = paymentSummary;

Note: In order to use object-based state, the rule application must first be bound to a .NET

assembly schema. See Binding to a .NET Assembly Schema in the main InRule Help file.

6.1.1.7 Retrieving Entity State

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Saving the state to the file system

// Save the state by passing in the path & filename.
mortgageEntity.SaveXml("MortgageOutput.xml");

Retrieving entity state as object

// get a reference to the object model - provided an object was used to
// create (or load) the entity
Mortgage mortgageObject = mortgageEntity.BoundValue as Mortgage;

Retrieving entity state as XML

// Get the state as XML

string stateXml = mortgageEntity.GetXml();

Date of Publication: 3/22/2021

Source Code Examples 215

6.1.1.8 Working with RuleSession State

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: Entity, RuleSession
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

The following demonstrates how to serialize RuleSession state, also known as a Test Scenario, to the
file system and then subsequently load the RuleSession state back into memory. The persisted file
on the file system can be loaded directly in irVerify by selecting File --> Load Test Scenario and
selecting the file.

Saving RuleSession State to the File System

// Save RuleSession state

ruleSession.SaveState(@"c:\work\state.testscenario");

Loading RuleSession State from the File System

// Load RuleSession state

ruleSession.LoadState(@"c:\work\state.testscenario");

6.1.2 Calling the Rules Engine as a Service

Calling the Rules Engine as a Service

Sychronously calling the REST Service

Asychronously calling the REST Service with JSON

Asychronously calling the REST Service with XML

Calling the SOAP EndPoint using a Service Reference

See Also: irServer - Rule Execution Service

6.1.2.1 Synchronously calling the REST Service

See Also: irServer - Rule Execution Service

The following example demonstrates calling the irServer - Rule Execution Service REST interface
synchronously with the legacy WebRequest class.

// The name of the ruleApp in the Catalog
string ruleApp = "MortgageCalculator";

// The address of the Rule Execution Service
string ruleExecutionServiceURI = "http://localhost/InRuleRuleEngineService_v5.0.16/
HttpService.svc";

Date of Publication: 3/22/2021

InRule Developer Help216

// The name of the Entity
string entityName = "Mortgage";

// The name of the RuleSet to execute, or use 'ApplyRules' if found to be null.
string ruleSetName = "PaymentSummaryRules";

// The entity state as a C# dynamic type
dynamic entityState = new
{
 LoanInfo = new
 {
 Principal = 53000m, APR = 7.625f, TermInYears = 15
 }
};

 // We use Newtonsoft's Json.Net library to convert this dynamic C# object to a JSON string
 string entityStateJsonInput = JsonConvert.SerializeObject(entityState);

 // New create the full request, inserting the JSON string that represents EntityState.
 dynamic requestData = new
 {
 RuleApp = new
 {
 RepositoryRuleAppRevisionSpec = new
 {

 RuleApplicationName = ruleApp
 }
 },
 EntityName = entityName,
 EntityState = entityStateJsonInput,
 RuleSetName = ruleSetName
 };

 string requestDataString = JsonConvert.SerializeObject(requestData);

 //If no ruleSetName exists, execute Auto rules, otherwise execute explicit rule.
 string postUri;
 if (string.IsNullOrEmpty(ruleSetName))
 { postUri = ruleExecutionServiceURI + "/ApplyRules"; }
 else
 { postUri = ruleExecutionServiceURI + "/ExecuteRuleSet"; }

 // Encode our string into an array of bytes, needed by WebRequest.
 UTF8Encoding encoding = new UTF8Encoding();
 byte[] bytes = encoding.GetBytes(requestDataString);

 // Create and prepare the request
 WebRequest webRequest = WebRequest.Create(postUri);

 // ApplyRules only works as a POST, not a GET
 webRequest.Method = "POST";

 // Our EntityState is encoded as an JSON document, not XML.
 webRequest.ContentType = "application/json";

 // WebRequest is old, and can't count by itself.
 webRequest.ContentLength = bytes.Length;

 string httpResponse;

 // Create our requestStream by opening the request, make sure it gets disposed when done.

Date of Publication: 3/22/2021

Source Code Examples 217

 using (var requestStream = webRequest.GetRequestStream())
 {
 // send the data
 requestStream.Write(bytes, 0, bytes.Length);
 }

 // In case it has not already been mentioned this is a rather primitive way of
 // making an HTTP based request. We recommend you read the HttpClient based code samples
 // elsewhere in this document, as that Asynchronous approach is a better way to go.
 try
 {
 HttpWebResponse response = webRequest.GetResponse() as HttpWebResponse;
 using (var stream = response.GetResponseStream())
 {
 var reader = new StreamReader(stream, Encoding.UTF8);
 httpResponse = reader.ReadToEnd();
 }

 }
 catch (WebException ex)
 {
 using (var stream = ex.Response.GetResponseStream())
 {
 var reader = new StreamReader(stream, Encoding.UTF8);
 httpResponse = reader.ReadToEnd();
 throw new Exception(httpResponse, ex);
 }
 }

dynamic resultJson = JsonConvert.DeserializeObject<dynamic>(httpResponse);
string entityJsonString = resultJson.EntityState;
dynamic entityJson = JsonConvert.DeserializeObject<dynamic>(entityJsonString);
string paymentSummaryJsonString = JsonConvert.SerializeObject(entityJson.PaymentSummary);

6.1.2.2 Asynchronously calling the REST Service with JSON

See Also: irServer - Rule Execution Service

The following example demonstrates calling the irServer - Rule Execution Service REST interface with
a JSON based Entity State.

static void Main(string[] args)
{

 // The name of the ruleApp in the Catalog
 string ruleApp = "MortgageCalculator";

 // The address of the Rule Execution Service
 string ruleExecutionServiceURI = "http://localhost/InRuleRuleEngineService_v5.0.16/
HttpService.svc";

 // The name of the Entity
 string entityName = "Mortgage";

 // The name of the RuleSet to execute, or use 'ApplyRules' if found to be null.
 string ruleSetName = "PaymentSummaryRules";

 // The entity state as a C# dynamic type

Date of Publication: 3/22/2021

InRule Developer Help218

 dynamic entityState = new
 {
 LoanInfo = new
 {
 Principal = 53000m, APR = 7.625f, TermInYears = 15
 }
 };

 // A console application's main() entry point cannot be declared as async, so here
 // we are creating an Async task to execute the Async method, then we will wait on
 // the result.
 Task<string> httpTask = AsyncRestJsonCatalog(ruleExecutionServiceURI, ruleApp,

 entityName, entityState, ruleSetName);

 // Calling the Result property of a Task object will block this thread until
 // the Task has had a chance to complete in it's worker thread.
 string httpTaskResult = httpTask.Result;

 // After this call you can inspect the raw result (as JSON) in resultJson, but note
 // that the EntityState will be serialized Json and must be decoded.
 dynamic resultJson = JsonConvert.DeserializeObject<dynamic>(httpTaskResult);
 string entityJsonString = resultJson.EntityState;

 // Decode the serialized entity Json into a dynamic entity.
 dynamic entity = JsonConvert.DeserializeObject<dynamic>(entityJsonString);

}

private async static Task<string> AsyncRestJsonCatalog(string ruleExecutionServiceURI,
string ruleApp,
 string ruleApplicationEntityName, dynamic entityStateObjectInput,
string ruleSetName)
{

 // We use Newtonsoft's Json.Net library to convert this dynamic C# object to a JSON string
 string entityStateJsonInput = JsonConvert.SerializeObject(entityStateObjectInput);

 // New create the full request, inserting the JSON string that represents EntityState.
 dynamic requestData = new
 {
 RuleApp = new
 {
 RepositoryRuleAppRevisionSpec = new
 {

 RuleApplicationName = ruleApp
 }
 },
 EntityName = ruleApplicationEntityName,
 EntityState = entityStateJsonInput,
 RuleSetName = ruleSetName
 };

 string requestDataString = JsonConvert.SerializeObject(requestData);

 //If no ruleSetName exists, execute Auto rules, otherwise execute explicit rule.
 string postUri;
 if (string.IsNullOrEmpty(ruleSetName))
 { postUri = ruleExecutionServiceURI + "/ApplyRules"; }
 else
 { postUri = ruleExecutionServiceURI + "/ExecuteRuleSet"; }

 // Our EntityState is encoded as JSON document, not XML.

Date of Publication: 3/22/2021

Source Code Examples 219

 string mediaType = "application/json";

 // Async call to HttpClient with an HttpContent and wait for result.
 HttpContent content = new StringContent(requestDataString, Encoding.UTF8, mediaType);
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await client.PostAsync(postUri, content);

 // Async convert the HttpResponseMessage's content to a string.
 string responsestring = await response.Content.ReadAsStringAsync();

 // We're done, return result.
 return responsestring;

}

6.1.2.3 Asynchronously calling the REST Service with XML

See Also: irServer - Rule Execution Service

The following example demonstrates calling the irServer - Rule Execution Service REST interface with
an XML based Entity State.

static void Main(string[] args)
{

 // The name of the ruleApp in the Catalog
 string ruleApp = "MortgageCalculator";

 // The address of the Rule Execution Service
 string ruleExecutionServiceURI = "http://localhost/InRuleRuleEngineService/HttpService.svc";

 // The Entity Name:
 string entityName = "Mortgage";

 // The name of the RuleSet to execute, or use 'ApplyRules' if found to be null.
 string ruleSetName = "PaymentSummaryRules";

 // The Entity State as XML text.
 string entityStateXMLInput = @"<?xml version='1.0' encoding='utf-8'?>
<Mortgage xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
 <LoanInfo>
 <Principal>53000</Principal>
 <APR>7.625</APR>
 <TermInYears>15</TermInYears>
 </LoanInfo>
 <PaymentSummary/>
</Mortgage>";

 // A console application's main() entry point cannot be declared as async, so here
 // we are creating an Async task to execute the Async method, then we will wait on
 // the result.
 Task<string> httpTask = AsyncRestXmlCatalog(ruleExecutionServiceURI, ruleApp, entityName,
entityStateXMLInput, ruleSetName);

 // Calling the Result property of a Task object will block this thread until
 // the Task has had a chance to complete in it's worker thread.

Date of Publication: 3/22/2021

InRule Developer Help220

 string httpTaskResult = httpTask.Result;

 Console.WriteLine(httpTaskResult);

 // Now let's extract the <EntityState> element, which has been encoded.
 // The Value property of the XElement will automatically decode the contents
 // and expose it as a string, which lets us look at the inner XML document "EntityState".
 // It's worth observing that while the input was encoded as UTF-8, this result is in
 // UTF-16.
 XDocument xmldoc = XDocument.Parse(httpTaskResult);
 string xmlEntityStateOutput =
 (from n in xmldoc.Descendants()
 where n.Name.LocalName == "EntityState"
 select n.Value).FirstOrDefault();

 // Wonderful! Now lets take that concept further and extract just the
 // <PaymentSummary> node from the document, which gives us our computed "answers".
 XDocument xmlentitystatedoc = XDocument.Parse(xmlEntityStateOutput);
 string paymentSummaryXml = (from n in xmlentitystatedoc.Descendants()
 where n.Name.LocalName == "PaymentSummary"
 select n.ToString()).FirstOrDefault();

 }

private async static Task<string> AsyncRestXmlCatalog(string ruleExecutionServiceURI,
 string ruleApp,
 string entityName,
 string entityStateXMLInput,
 string ruleSetName)
{

 // We must encode the Entity State XML into a valid XML string so that
 // it can be wrapped with the outer XML request document.
 string entityStateXMLEncoded = SecurityElement.Escape(entityStateXMLInput);

 string rootNodeName;
 if (string.IsNullOrEmpty(ruleSetName))
 { rootNodeName = "ApplyRulesRequest"; }
 else
 { rootNodeName = "ExecuteRuleSetRequest"; }

 // Now we generate the outer XML request document.
 string requestXML = $@"<?xml version='1.0' encoding='utf-8'?>
<{rootNodeName} xmlns='http://www.inrule.com/XmlSchema/Schema'>
 <RuleApp>
 <RepositoryRuleAppRevisionSpec>
 <RuleApplicationName>{ruleApp}</RuleApplicationName>
 </RepositoryRuleAppRevisionSpec>
 </RuleApp>
 <EntityState>{entityStateXMLEncoded}</EntityState>
 <EntityName>{entityName}</EntityName>
 <RuleSetName>{ruleSetName}</RuleSetName>
</{rootNodeName}>";

 //If no ruleSetName exists, execute Auto rules, otherwise execute explicit rule.
 string postUri;
 if (string.IsNullOrEmpty(ruleSetName))
 { postUri = ruleExecutionServiceURI + "/ApplyRules"; }
 else
 { postUri = ruleExecutionServiceURI + "/ExecuteRuleSet"; }

 // Our EntityState is encoded as an XML document, not JSON.

Date of Publication: 3/22/2021

Source Code Examples 221

 string mediaType = "application/xml";

 // Async call to HttpClient with an HttpContent and wait for result.
 HttpContent content = new StringContent(requestXML, Encoding.UTF8, mediaType);
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await client.PostAsync(postUri, content);

 // Async convert the HttpResponseMessage's content to a string.
 string responseXML = await response.Content.ReadAsStringAsync();

 // We're done, return result.
 return responseXML;
}

6.1.2.4 Calling the SOAP EndPoint using a Service Reference

Prerequisites: A valid Service Reference
See Also: irServer - Rule Execution Service

The following sample represents how to call irServer Rule Execution Service SOAP EndPoint using a
service reference:

using (RuleEngineServiceClient proxy = new RuleEngineServiceClient())

{

try

{

// Get RuleApp as defined in the config (RepositoryRuleApp or

FileSystemRuleApp)

RepositoryRuleApp rules = new RepositoryRuleApp();

rules.RepositoryServiceUri = "http://server/InRuleCatalogService/

Service.svc";

RepositoryRuleAppRevisionSpec spec = new

RepositoryRuleAppRevisionSpec();

spec.RuleApplicationName = "MortgageCalculator";

rules.RepositoryRuleAppRevisionSpec = spec;

rules.UserName = "Admin";

rules.Password = "password";

// Create new ApplyRulesRequest

ApplyRulesRequest request = new ApplyRulesRequest();

request.RuleApp = rules;

request.EntityName = "Mortgage";

request.RuleEngineServiceOutputTypes = new

RuleEngineServiceOutputTypes();

request.RuleEngineServiceOutputTypes.ActiveNotifications = true;

request.RuleEngineServiceOutputTypes.ActiveValidations = true;

request.RuleEngineServiceOutputTypes.EntityState = true;

// Load state XML

Console.WriteLine("- Loading XML state for 'Invoice'...");

Date of Publication: 3/22/2021

InRule Developer Help222

request.EntityState = "<Mortgage><LoanInfo><Principal>500000</

Principal><APR>6.875</APR>< TermInYears > 30 </TermInYears ></LoanInfo

><PaymentSummary/ ></Mortgage > ";

Console.WriteLine("Input State:");

Console.WriteLine(request.EntityState);

Console.WriteLine("");

// Submit Request

Console.WriteLine("- Calling ApplyRules() from RuleEngineService...");

RuleEngineServiceResponse response =

proxy.ExecuteRuleEngineRequest(request);

Console.WriteLine("Active Notifications:");

foreach (Notification notification in response.ActiveNotifications)

{

Console.WriteLine(notification.NotificationType + ": " +

notification.Message);

}

Console.WriteLine("");

Console.WriteLine("Active Validations:");

foreach (Validation validation in response.ActiveValidations)

{

Console.WriteLine(validation.InvalidMessageText);

}

Console.WriteLine("");

Console.WriteLine("Output State:");

// Note: XML formatting not maintained in response

Console.WriteLine(response.EntityState);

Console.WriteLine("");

}

catch (Exception ex)

{

Console.WriteLine("Unknown exception occurred during RuleEngineService

request: " + ex.ToString());

}

}

Console.WriteLine("[END ServiceReferenceConsumer Sample]");

6.1.3 Retrieving and Setting Fields and Entities

Retrieving and Setting Fields and Entities

Retrieving an Entity from the RuleSession

Retrieving Fields

Setting Fields

Date of Publication: 3/22/2021

Source Code Examples 223

6.1.3.1 Retrieving an Entity from the RuleSession

Prerequisites: A valid RuleSession, A valid Entity
Namespaces: InRule.Runtime
Classes: RuleSession, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

To retrieve an Entity from the RuleSession, use the GetEntity() method. The input to GetEntity() may
contain either the Element ID or the Instance ID, if one has been assigned.

If no Entity is found, GetEntity() returns null.

Obtain the Element ID

// Obtain the Element ID to lookup the Entity from the RuleSession at a later point

string elementId = ruleSession.CreateEntity("Invoice").ElementId;

Retrieve the Entity using the Element ID

// Get the Entity from the RuleSession using the Element ID

Entity entity = ruleSession.GetEntity(elementId);

if (entity == null)

{

 // Entity was not found

}

Retrieve the Entity using an Instance ID

// Get the Entity from the RuleSession using the Element ID

Entity entity = ruleSession.GetEntity("Invoice175941");

if (entity == null)

{

 // Entity was not found

}

6.1.3.2 Retrieving Fields

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Field, Collection, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Retrieving a field from the entity

// Retrieve the CustomerID field from the Invoice entity.

Field customerId = invoiceEntity.Fields["CustomerID"];

Retrieving a field from a collection

// Retrieve the ProductID of the first LineItem in the LineItems collection.

Field productId = invoiceEntity.Collections["LineItems"][0].Fields["ProductID"];

Note: Collection indexing is 0-based through the SDK and 1-based for referencing from within a rule
application.

Retrieving a field to set a typed variable

// Retrieve the CustomerID field value from the Invoice entity.

int customerId = invoiceEntity.Fields["CustomerID"].Value.ToInt32();

Date of Publication: 3/22/2021

InRule Developer Help224

Retrieving all fields in an Entity

// Show all the fields in the Entity

foreach (Field field in invoiceEntity.Fields)

{

Console.WriteLine(string.Format("Found {0} {1}", field.Name,

field.Value.ToString()));

}

6.1.3.3 Setting Fields

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Field, Collection, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities, Retrieving Fields

Setting a field in the entity

// Set the CustID field to 2

invoiceEntity.Fields["CustomerID"].Value = 2;

Setting a field from a collection

// Set the ProductID field of the first LineItem in the LineItems collection.

invoiceEntity.Collections["LineItems"][0].Fields["ProductID"].Value = 6;

Note: Collection indexing is 0-based through the SDK and 1-based for referencing within rules.

6.1.4 Working with Collections

Working with Collections

Looping through a Collection

Adding a Member to a Collection

Resolving Field Types at Runtime

6.1.4.1 Looping Through a Collection

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Field, Collection, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Entity based collections

// loop over all the payments collection members

foreach (EntityCollectionMember payment in mortgageEntity.Collections["Payments"])

{

// Write out some of the entity field values

Date of Publication: 3/22/2021

Source Code Examples 225

Console.WriteLine(payment.Fields["PaymentDate"].Value.ToString());

Console.WriteLine(payment.Fields["Amount"].Value.ToString());

Console.WriteLine(payment.Fields["RemainingBalance"].Value.ToString());

}

An alternative way to loop through the entities themselves is as follows:

// Check if the collection of entities

if (collection is InRule.Runtime.EntityCollection)

{

 // process a collection of entities

 foreach (EntityCollectionMember member in collection)

 {

 // Get the entity the member refers to

 Entity memberEntity = member.Value.ToEntity();

 // Iterate the fields

 foreach (Field field in memberEntity.Fields)

 {

 // get the fields info

 Console.WriteLine("FieldName:" + field.Name);

 Console.WriteLine("FieldValue:" + field.Value.ToString());

 }

 }

}

Complex collections

// Loop through the members in the complex collection AdditionalCharges

foreach (CollectionMember charge in

mortgageEntity.Collections["AdditionalCharges"])

{

 // write the field values

 Console.WriteLine(charge.Fields["Name"].Value.ToString());

 Console.WriteLine(charge.Fields["Amount"].Value.ToString());

}

Note: Collection indexing is 0-based through the SDK and 1-based for referencing within rules

6.1.4.2 Adding a Member to a Collection

Prerequisites: A valid Entity
Namespaces: InRule.Runtime
Classes: Collection, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Adding a new member to a Collection

// Create top level entity

Entity invoiceEntity = ruleSession.CreateEntity("Invoice");

// Get reference to the LineItems collection

Collection lineItemCollection = invoiceEntity.Collections["LineItems"];

// Add a new line item to the collection

CollectionMember lineItem = (lineItemCollection.Add());

Date of Publication: 3/22/2021

InRule Developer Help226

// Get underlying entity

Entity lineItemEntity = lineItem.Value.ToEntity();

// Update the line item fields on the newly added member

lineItemEntity.Fields["ProductID"].Value = 2;

lineItemEntity.Fields["Quantity"].Value = 10;

Adding an existing member to a Collection

// Create top level entity

Entity invoiceEntity = ruleSession.CreateEntity("Invoice");

// Get reference to the LineItems collection

Collection lineItemCollection = invoiceEntity.Collections["LineItems"];

// Create a LineItem and populate the fields

Entity lineItemEntity = ruleSession.CreateEntity("LineItem");

lineItemEntity.Fields["ProductID"].Value = 3;

lineItemEntity.Fields["Quantity"].Value = 100;

// Append the new member to the collection

lineItemCollection.Add(lineItemEntity);

6.1.4.3 Resolving Field Types at Runtime

Prerequisites:
Namespaces: InRule.Runtime
Classes: FileSystemRuleApplicationReference, RuleSession, Entity
See Also:
References: InRule.Runtime.dll, InRule.Common.dll

To resolve the field type, you can use the following code:

// Test if this field refers to an entity

if (field.GetType() == typeof(InRule.Runtime.EntityField))

{

}

In a similar way, you can test if a collection contains entities:

// Test if this is a collection of entities

if (collection.GetType() == typeof(InRule.Runtime.EntityCollection))

{

}

Date of Publication: 3/22/2021

Source Code Examples 227

6.1.5 Executing Rules

Executing Rules

Applying Rules

Applying Rules with an Activation Model

Executing Decisions

Executing an Independent Rule Set or Rule Flow

Checking For Notifications & Validations

Handling Exceptions

Runtime Settings

Retrieving and Processing the RuleExecutionLog

Retrieving the Performance Statistics Report

Retrieving the Performance Log

6.1.5.1 Applying Rules

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleSession, Entity, RuleException
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities, Handling
Exceptions
References: InRule.Runtime.dll, InRule.Common.dll

Apply rules

try

{

 // Apply the rules.

 session.ApplyRules();

}

catch (RuleException ex)

{

 // Handle any rule engine exceptions here.

 Console.WriteLine(ex.ToString());

}

 Note: This will execute all Auto RuleSets, calculations, constraints and classifications.

Execute explicit rulesets and rule flows

// Apply the CalculatePaymentSchedule from the mortgageEntity
mortgageEntity.ExecuteRuleSet("CaculatePaymentSchedule");

Notes:

Rule flows are executed using the same method and behave in the same manner as explicit
rulesets.
Any auto rules are also be applied when applying an explicit ruleset or rule flow

Execute explicit rulesets that accept parameters

Date of Publication: 3/22/2021

InRule Developer Help228

// Execute the ruleset passing in a list of parameters
mortgageEntity.ExecuteRuleSet("AddCharge", "Appraisal", 400.99);

6.1.5.2 Applying Rules with an Activation Model

Prerequisites: A valid RuleSession and Entity
Namespaces: InRule.Runtime
Classes: RuleSession, Entity
References: InRule.Runtime.dll, InRule.Common.dll

The following examples demonstrate how to control rule execution by Activating and Deactivating
RuleSets through a variety of techniques. The Activation should be set by calling one of the methods
below and then rules can be applied as seen here.

Activate RuleSets by Name

// Activate ruleset by name

ruleSession.ActivateRuleSets("Entity1.RuleSet1");

Deactivate RuleSets by Name

// Deactivate ruleset by name

ruleSession.DeactivateRuleSets("Entity1.RuleSet1");

Activate RuleSets by Category

// Activate ruleset by category

ruleSession.ActivateRuleSetsByCategory("Category1");

Deactivate RuleSets by Category

// Deactivate ruleset by category

ruleSession.DeactivateRuleSetsByCategory("Category1");

Activate RuleSet by Name from an Entity

// Activate ruleset by name

entity.ActivateRuleSet("RuleSet1");

Deactivate RuleSet by Name from an Entity

// Deactivate ruleset by name

entity.DeactivateRuleSet("RuleSet1");

Reset RuleSet activations

// Reset rule activations

ruleSession.ResetAllRuleSetActivations();

Note: When calling ResetAllRuleSetActivations, the Activation status is set back to the original status
at the time of authoring.

6.1.5.3 Executing Decisions

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleSession, RuleException
See Also: Retrieving a Rule Application, Creating a RuleSession, Handling Exceptions
References: InRule.Runtime.dll, InRule.Common.dll

Execute decision using DecisionInput

try

Date of Publication: 3/22/2021

Source Code Examples 229

{

 // Execute the Decision

 var decision = session.CreateDecision("CalculateArea");
 decision.Execute(new DecisionInput("height", 30), new DecisionInput("width",

400));
}

catch (RuleException ex)

{

 // Handle any rule engine exceptions here.

 Console.WriteLine(ex.ToString());

}

Note: If a Decision input is an Entity type, an Entity instance should be passed. Any Auto RuleSets,
calculations, constraints and classifications on the passed Entity will be executed.

Execute decision using JSON

try

{

 // Execute the Decision

 var decision = session.CreateDecision("CalculateArea");
 decision.Execute("{ \"height\": 30, \"width\": 400 }, EntityStateType.Json));

}

catch (RuleException ex)

{

 // Handle any rule engine exceptions here.

 Console.WriteLine(ex.ToString());

}

6.1.5.4 Executing an Independent Rule Set or Rule Flow

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleSession, Entity
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Execute an Independent Ruleset

int height = 30;
int width = 40;

// Create a runtime instance of the independent ruleset.
RuleSet calcAreaRuleSet = ruleSession.CreateIndependentRuleSet("CalculateArea");

// Execute the ruleset passing in the parameters
Runtime.RuleExecutionLog executionLog = calcAreaRuleSet.Execute(height, width);

6.1.5.5 Checking for Notifications and Validations

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: Notification, Validation, RuleSession
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities, Applying Rules

Date of Publication: 3/22/2021

InRule Developer Help230

Check for notifications

// Retrieve the notifications from the session state

foreach (Notification note in ruleSession.GetNotifications())

{

 // Handle the notification

 Console.WriteLine(note.Message);

}

Check for validations

// Retrieve the validations from the session state

foreach (Validation validation in ruleSession.GetValidations())

{

 // Handle the validation

 Console.WriteLine(validation.Message);

}

6.1.5.6 Handling Exceptions

Prerequisites: A valid RuleSession, a Try block wrapped around InRule SDK code to load state and
execute rules.
Namespaces: InRule.Runtime, InRule.Common.Exceptions, InRule.Repository
Classes: RuleException, CompileException, CompilerError, RuntimeException
See Also: Basic Example of Creating a RuleApplication in Code
References: InRule.Runtime.dll, InRule.Common.dll

Below are the common exceptions to handle compile errors, runtime errors and also the
RuleException, which is the base class for all InRule exceptions. They are listed in the order in which
they should be implemented.

The individual values in the AuthoringErrorCode and RuntimeErrorCode enumerations may change in
future versions of InRule.

Note: See RuleException class for a complete list of InRule exceptions.

Handling compiler exceptions

// Catching compile exceptions

catch (CompileException ex)

{

 foreach (CompileError err in ex.Errors)

 {

 if (err.AuthoringErrorCode ==

AuthoringErrorCode.SqlQueryParameterTypeIsInvalid)

 {

 // React

 }

 }

}

Handling integration exceptions

// Catching integration exceptions

catch (IntegrationException ex)

{

 if (ex.RuntimeErrorCode == RuntimeErrorCode.StateUnableToBindToMember)

Date of Publication: 3/22/2021

Source Code Examples 231

 {

 // React

 }

}

Handling base exceptions

// Base class exception; can be used to catch all InRule exceptions

catch (RuntimeException ex)

{

 foreach (ErrorLogMessage err in ex.ErrorMessages)

 {

 if (err.RuntimeErrorCode ==

RuntimeErrorCode.AppSettingsSectionMissingOrMalformed)

 {

 // React

 }

 }

}

6.1.5.7 Runtime Settings

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleSessionSettings, RuleSession
References: InRule.Runtime.dll

These are some of the settings the rule engine uses during execution.

Overriding the current date

Gets or sets a value that will override return value of the Today() function in the rule engine. If not
set, the rule engine will use the current date.

To override the current date to January 1, 2008:

ruleSession.Settings.Now = new DateTime(2008, 1, 1);

Overriding the execution timeout

Gets or sets the maximum time for rule engine execution.

To override the default setting to 60 seconds:

ruleSession.Settings.ExecutionTimeout = new TimeSpan(0, 0, 60);

Overriding the maximum cycle count

Gets or sets the maximum cycles for rule engine execution.

To override the default setting:

ruleSession.Settings.MaxCycleCount = 200000;

Returning detailed statistics information

Gets or sets a value determining whether statistics info will be logged and returned. The default is
false.

Note: This will affect the amount of information that is displayed on the Performance Statistics
report.

Date of Publication: 3/22/2021

InRule Developer Help232

To override the default setting:

ruleSession.Settings.LogOptions = EngineLogOptions.SummaryStatistics;

To enable metrics logging

Set the MetricLogger property to an instance of an object that implements the IMetricLogger interface
as shown below.

ruleSession.Settings.MetricLogger = new CsvMetricLogger();

For more details, refer to the CSV sample application.

6.1.5.8 Retrieving and Processing the RuleExecutionLog

Prerequisites: A valid RuleSession and Entity.
Namespaces: InRule.Runtime
Classes: RuleSession, Entity
References: InRule.Runtime.dll, InRule.Common.dll

Retrieving RuleExecutionLog from RuleSession.ApplyRules

// Apply rules and capture RuleExecutionLog

RuleExecutionLog executionLog = ruleSession.ApplyRules();

Retrieving RuleExecutionLog from Entity.ExecuteRuleSet

// Execute explicit RuleSet and capture RuleExecutionLog

RuleExecutionLog executionLog = entity.ExecuteRuleSet("CalculatePaymentSchedule");

Processing the RuleExecutionLog

The following method will take a RuleExecutionLog as a parameter and return a string with the text
from all of the messages separated by line breaks.

public string GetExecutionLogText(RuleExecutionLog executionLog)

{

 // Spin through all of the messages in the RuleExecutionLog and append to a

StringBuilder

 StringBuilder sb = new StringBuilder();

 foreach (LogMessage message in executionLog.AllMessages)

 {

 sb.Append(message.Description + Environment.NewLine);

 }

 // return string

 return sb.ToString();

}

See the Implementation Guide for more details.

6.1.5.9 Retrieving the Performance Log

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: FileSystemRuleApplicationReference, RuleSession, Entity

https://github.com/InRule/InRule.Runtime.Metrics

Date of Publication: 3/22/2021

Source Code Examples 233

See Also: Basic Example Of Calling Rules Engine, Retrieve the Performance Statistics Report
References: InRule.Runtime.dll, InRule.Common.dll

The Performance Log contains information about load, compile and execution times. This information
is also available in the InRule Event Logs. See Event Log Details for more information. The following
example demonstrates how to capture the Performance Log information using the SDK.

// Create the "Rectangle" entity, passing in Xml for state

Entity rectangle = session.CreateEntity("Rectangle", inputXml);

// Apply rules

session.ApplyRules();

// Get performance log information from the RuleSession

string perfLogDetails = session.Statistics.GetRunningTotalAllReport();

Example of Performance Log

SessionId: b8ea59d5-8ec3-4c8b-947c-bb41411d8304

GetRuleApplicationDefExecTime (usually indicates a compile): 14569.036ms (max

14569.036ms) 1

CreateRuleApplicationDefInfoExecTime: 1511.761ms (max 1511.761ms) 1

GetRuleApplicationRevisionKeyExecTime (incl. in CreateRuleApplicationDefInfo):

6.591ms 1

AggExecStatInfo.AggDirectives (incl. in Submit): 399.384ms 1

CreateSessionExecTime: 93.793ms 1

CreateEntityExecTime: 17511.331ms (max 17511.331ms) 1

LoadXmlExecTime: 93.128ms 1

SubmitExecTime: 642.903ms (max 642.903ms) 1

ProcessResponseExecTime: 22.564ms 1

ThreadId: 11

MaxCacheDepth: 5

CurrentCacheDepth: 1

CompileExecTime: 17195.075ms 1

WorkingMemCreateCnt: 1

Ruleapp 'RectangleApp': 1

CacheUpTime: 18.421sec

RunningTotalAll: 35558.794ms

6.1.5.10 Retrieving the Performance Statistics Report

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: FileSystemRuleApplicationReference, RuleSession, Entity, RuleException
See Also: Basic Example Of Calling Rules Engine, Retrieve the Performance Log
References: InRule.Runtime.dll, InRule.Common.dll

The following basic example demonstrates how to capture the Performance Statistics Report at run
time.

// Turn on capturing of detailed statistics (if desired)

ruleSession.Settings.LogOptions = EngineLogOptions.DetailStatistics;

// Run rules

ruleSession.ApplyRules();

// Get the XML as a string for the Performance Statistics Report (includes log

messages if log options configured to include them)

string reportXml = ruleSession.LastRuleExecutionLog.GetXml();

Date of Publication: 3/22/2021

InRule Developer Help234

// Get the HTML as a string for the Performance Statistics Report

string reportHtml = ruleSession.LastRuleExecutionLog.GetHtml();

// write the report to the file system (could also view in a web browser control)

File.WriteAllText(@"c:\work\PerfStatsReport.html", reportHtml);

6.1.6 Working with the Rule Application Cache

Working with the Rule Application Cache

Adding Items into the Cache

Managing the Cache

Controlling Compilation and Cache Retention

Iterating Items in the Cache

6.1.6.1 Adding Items into the Cache

Prerequisites:
Namespaces: InRule.Runtime
Classes: FileSystemRuleApplicationReference, CatalogRuleApplicationReference,
InMemoryRuleApplicationReference, RuleSession
See Also: Creating a RuleSession with Cache Retention, Controlling Compilation and Cache
Retention, Iterating items in the cache , Working with the Rule Application Cache
References: InRule.Runtime.dll, InRule.Common.dll

In general, items are automatically added to the cache when needed or explicitly using Compile,

however you can manually add rule applications into the cache:

string ruleAppPath = @"c:\temp\Invoice.ruleApp";

// add an item into the cache using a rule application reference

var ruleApp = new FileSystemRuleApplicationReference(ruleAppPath);

RuleSession.RuleApplicationCache.Add(ruleApp);

// add an item into the cache using the path, notice that the same options provided

// by the compile method are also available

RuleSession.RuleApplicationCache.Add(ruleAppPath, true,

CacheRetention.FromWeight(3000));

6.1.6.2 Managing the Cache

Prerequisites: A valid RuleApplicationReference
Namespaces: InRule.Runtime
Classes: RuleSession, RuleApplicationReference, FileSystemRuleApplicationReference,
InMemoryRuleApplicationReference, CatalogRuleApplicationReference
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating a RuleSession with Cache
Retention, Adding items into the Cache, Iterating items in the cache , Controlling Compilation and
Cache Retention

Date of Publication: 3/22/2021

Source Code Examples 235

Compiling a rule application with delegates

When you compile your rule application, you can specify if executable code (delegates) will be
compiled at the same time or only when needed. If you select the former, there will be a slower
compile time, but the execution time will be faster.

// Compile the RuleApplicationReference, including the executable code (delegates)

ruleAppRef.Compile(CompileSettings.Default);

Setting the degree of parallelism for compilation

You can direct InRule regarding how many threads or cores to use for parallel work when compiling
a rule application. This value is a non-negative integer, which you set as follows:

Value Meaning

0 on; InRule will decide based on the number of cores available

1 off; one thread will be used for all work (default)

n the number of threads to use

// Compile the RuleApplicationReference, specifying at most two threads or cores

ruleAppRef.Compile(CompileSettings.Create(EngineLogOptions.None, 2));

Note: InRule recommends the default setting (0).

Adding a rule application to the cache

After compiling your rule application, you can speed up future executions by adding it to the rule
session cache.

// Add the rule application to the rule application cache

RuleSession.RuleApplicationCache.Add(ruleAppRef);

Removing a rule application from the cache

Of course, you may also remove a rule application from the cache.

// Remove a rule application from the rule application cache

RuleSession.RuleApplicationCache.Remove(ruleAppRef);

Clearing the rule application caches

From time to time, you may want to clear the caches completely. You may do this for the internal
cache of a rule application, or for the entire rule session cache.

// Clear internal caches in a rule application reference

ruleAppRef.ClearCompiledFunctions();

// Clear the entire rule application cache

RuleSession.RuleApplicationCache.Clear();

6.1.6.3 Controlling Compilation and Cache Retention

Prerequisites:
Namespaces: InRule.Runtime
Classes: RuleApplicationReference
See Also: Creating a RuleSession with Cache Retention, Adding items into the Cache, Iterating
items in the cache , Working with the Rule Application Cache
References: InRule.Runtime.dll, InRule.Common.dll

Date of Publication: 3/22/2021

InRule Developer Help236

// You can check to see if a rule application is compiled

if (!ruleApp.IsCompiled)

{

 // Compile functions as well as metadata, if false only the

 // metadata is compiled

 bool compileFunctions = true;

 // Set the cache retention, AlwaysRetain will extend the cache to fit all

 // apps compiled with AlwaysRetain

 CacheRetention cacheRetention = CacheRetention.AlwaysRetain;

 // You can also use a weight to control how an application is retained in the

 // cache, a high weight take preference over lower weights - int.MaxValue is

the

 // same as Always Retain

 cacheRetention = CacheRetention.FromWeight(2000);

 // Compile the rule app

 ruleApp.Compile(compileFunctions, cacheRetention);

}

6.1.6.4 Iterating Items in the Cache

Prerequisites:
Namespaces: InRule.Runtime
Classes: RuleApplicationReference
See Also: Creating a RuleSession with Cache Retention, Controlling Compilation and Cache
Retention, Adding Items into the Cache, Working with the Rule Application Cache
References: InRule.Runtime.dll, InRule.Common.dll

You can iterate through all the cache entries to get information:

public string GetCacheEntriesInfo()

{

 var sb = new StringBuilder();

 // Get the existing cache entries from the RuleSession - this returns

 // a set of RuleApplicationReferences

 IEnumerable<RuleApplicationReference> cacheEntries;

 cacheEntries = RuleSession.RuleApplicationCache.Items;

 foreach (RuleApplicationReference cacheEntry in cacheEntries)

 {

 // Extract information from the rule application

 sb.AppendLine("Rule App Name:" + cacheEntry.GetRuleApplicationDef().Name);

 sb.AppendLine("Unique Name:" + cacheEntry.Name);

 // if it has been compiled, you can get properties such as time

 if (cacheEntry.LastMetadataCompile != null)

 {

 DateTime lastMetaCompileTime =

Date of Publication: 3/22/2021

Source Code Examples 237

cacheEntry.LastMetadataCompile.Value.UtcDateTime;

 sb.AppendLine("Last metadata compile:" +

lastMetaCompileTime.ToString());

 }

 // get information about its rank in the cache

 sb.AppendLine("Cache retention rank:" +

cacheEntry.CacheRetention.Weight.ToString());

 sb.AppendLine();

 }

 return sb.ToString();

}

6.1.7 Working with Rule Application Metadata

Working with Rule Application Metadata

Using the RuleApplicationDef Object

Retrieving Definition Objects at Runtime

Using Element Metadata

Working with Attributes

Working with Value Lists

6.1.7.1 Using the RuleApplicationDef Object

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleApplicationDefInfo, RuleApplicationDef, DataElementDef, EntityDef
See Also: Creating a RuleSession

RuleApplicationDef metadata

// System and user-defined attributes

string attributeValue =

ruleSession.GetRuleApplicationDef().Attributes["MyAttribute"];

// Categories defined in the rule application

CategoryDefCollection categories = ruleSession.GetRuleApplicationDef().Categories;

// Getting name of first category in collection

string catalogName = categories[0].Name;

// Getting DataElementDef

DataElementDef dataElementDef = (DataElementDef)

ruleSession.GetRuleApplicationDef().DataElements["MyInlineTable"];

Iterate through the entities of a rule application

// Iterate through the entities for the rule application

Date of Publication: 3/22/2021

InRule Developer Help238

foreach (EntityDef entityDef in ruleSession.GetRuleApplicationDef().Entities)

{

 Console.WriteLine(entityDef.Name);

}

6.1.7.2 Retrieving Definition Objects at Runtime

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime, InRule.Repository, InRule.Repository.RuleElements
Classes: EntityDef, FieldDef, RuleSetDef, RuleElementDef, Entity, Field, RuleSet, RuleElement
See Also: Using Element Metadata

The following examples demonstrate how to retrieve definition objects through the runtime objects.
These objects can then be utilized to access object metadata and user-defined attributes.

// Get EntityDef from Entity

EntityDef entityDef = entity.GetDef();

// Get FieldDef from Field

FieldDef fieldDef = field.GetDef();

// Get CollectionDef from Collection, assigned to FieldDef

FieldDef collectionDef = collection.GetDef();

// Get RuleSetDef from RuleSet

RuleSetDef ruleSetDef = (RuleSetDef)ruleSet.GetDef();

// Get RuleElementDef from RuleElement, getting first child element in this example

RuleElementDef ruleElementDef = ruleSet.RuleElements[0].GetDef();

6.1.7.3 Using Element Metadata

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime, InRule.Repository, InRule.Repository.RuleElements
Classes: EntityDef, FieldDef, RuleSetDef, RuleElement
See Also: Retrieving Definition Objects at Runtime

Element definition and user-defined metadata can be retrieved from the definition objects, which are
available at runtime. See Retrieving Definition Objects at Runtime for details.

Iterate through the fields objects on an entity

// Iterate through fields in an entity

foreach (FieldDef fieldDef in invoiceEntity.GetDef().Fields)

{

 if (fieldDef.IsCalculated)

 // Display the expression if a calculation

 Console.WriteLine(fieldDef.Calc.FormulaText);

 if (fieldDef.IsAnEntityDataType)

 // Display the referenced entity if a child entity field

 Console.WriteLine(fieldDef.DataTypeEntityName);

}

Date of Publication: 3/22/2021

Source Code Examples 239

Field metadata

// Get data type

string dataType = fieldDef.DataType.ToString();

// Get default value

string defaultValue = fieldDef.DefaultValue.ToString();

// Get Attributes

ICollection attributes = fieldDef.Attributes.Values;

// Get assigned categories

ICollection assigned = fieldDef.AssignedCategories;

Iterate through the rulesets on an entity

// Iterate through the rule sets on an entity

foreach (RuleSet ruleSet in invoiceEntity.RuleSets)

{

 // Cast into a RuleSetDef

RuleSetDef ruleSetDef = (RuleSetDef)ruleSet.GetDef();

 // See if this is an active explicit ruleset

 if (ruleSetDef.FireMode == RuleSetFireMode.Explicit && ruleSetDef.IsActive)

 {

 Console.WriteLine(ruleSet.Name);

 }

}

6.1.7.4 Working with Attributes

Prerequisites: A valid EntityDef and FieldDef
Namespaces: InRule.Repository
Classes: EntityDef, FieldDef
See Also: Creating a RuleSession, Retrieving Definition Objects at Runtime

Retrieve a user-defined attribute on an entity

// Retrieve an attribute defined on an entity

Console.WriteLine(entityDef.Attributes.Default["MyAttribute"]);

Iterate through the attributes on a field

if (fieldDef.Attributes != null && fieldDef.Attributes.Count > 0)

{

 foreach (XmlSerializableStringDictionary.XmlSerializableStringDictionaryItem

attributeItem in fieldDef.Attributes.Default)

 {

 Console.WriteLine(attributeItem.Key + ":" + attributeItem.Value);

 }

}

6.1.7.5 Working with Value Lists

Prerequisites: A valid Entity and RuleSession

Date of Publication: 3/22/2021

InRule Developer Help240

Namespacesxxx: InRule.Runtime, InRule.Repository
Classes: ValueListItem, RuleApplicationDef, ListItemDefCollection

Populating a combobox from a value list

// Retrieve a value list that is associated to a field

ValueList valueList = entity.Fields["State"].AssociatedValueList;

foreach (ValueListItem valueListItem in valueList)
{
 // Add the list item value to the combobox
 comboBox.Items.Add(valueListItem);
 comboBox.DisplayMemberPath = "Value";
}

Populating a combobox from a standalone value list

// Get value list using the session’s DataManager
ValueList myList = ruleSession.Data.GetValueList("StandAloneValueList");

// Tell combo box what field to display to the end user
comboBox.DisplayMemberPath = "DisplayText";

// Add the item to the combo box
foreach (ValueListItem item in myList)
{
 comboBox.Items.Add(item);
}

6.1.8 Other

Other

Launching irVerify or the StateViewer From Code

Overriding EndPoints at Runtime

Overriding DataElements at Runtime

Overriding Culture Settings at Runtime

Rule Tracing Input and Output Using RuleSession

Working with the Trace Viewer Through irSDK

Executing a Simple Test Suite

6.1.8.1 Launching irVerify and the State Viewer from code

Prerequisites: A valid RuleSession and Entity.
Namespaces: InRule.Runtime.Testing
Classes: EntityTester, EntityStateViewer
See Also: Retrieving a Rule Application, Creating a RuleSession, Creating Entities

Date of Publication: 3/22/2021

Source Code Examples 241

Start irVerify

// Start irVerify by passing in the entity

EntityTester.Show(mortgageEntity);

Show the state viewer

// Show the state viewer by passing in the entity

EntityStateViewer.Show(mortgageEntity);

Required System References

PresentationFramework

PresentationCore

WindowsBase

System.Xaml

Required InRule References

inrule.runtime.dll

inrule.runtime.testing.dll

inrule.common.dll

6.1.8.2 Overriding EndPoints at Runtime

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime, InRule.Repository.EndPoints
Classes: RuleSession, DatabaseConnection, SendMailServerDef, WebServiceDef
See Also: Retrieving a Rule Application, Creating a RuleSession

Setting the database endpoint

// Override InvoiceDB connection string

string connString =

ConfigurationManager.ConnectionStrings["TestDb"].ConnectionString;

ruleSession.Overrides.OverrideDatabaseConnection("InvoiceDB", connString);

Setting the WebService endpoint

// Override the web service address

ruleSession.Overrides.OverrideWebServiceAddress("WebService1", "http://localhost/

MyWebService/service1.svc?wsdl");

// Override the web service MaxReceivedMessageSize

ruleSession.Overrides.OverrideWebServiceMaxReceivedMessageSize("WebService1",

Int32.MaxValue);

Setting the Mail server endpoint

//Override the smtp server from the .config file setting

string server = ConfigurationManager.AppSettings["MailServer"];

ruleSession.Overrides.OverrideMailServerConnection("SmtpServer", server);

Date of Publication: 3/22/2021

InRule Developer Help242

6.1.8.3 Overriding DataElements at Runtime

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime, InRule.Repository
Classes: RuleSession, TableDef, XmlDocumentDef
See Also: Retrieving a Rule Application, Creating a RuleSession

Overriding an inline table

ValueList newValueList = ValueList.New(

"Mon", "Monday",

"Tue", "Tuesday",

"Wed", "Wednesday",

"Thu", "Thursday",

"Fri", "Friday",

"Sat", "Saturday",

"Sun", "Sunday");

ruleSession.Overrides.OverrideInlineValueList("InlineValueList1", newValueList);

Overriding an inline XML document

using (var reader = new StringReader("<invoice><lineitem><id>1</id><name>Pencil</

name><price>$1.00</price></lineitem><lineitem><id>2</id><name>Computer</

name><price>$1000.00</price></lineitem></invoice>"))

{

XPathDocument xml = new XPathDocument(reader);

// Override the inline XML document

ruleSession.Overrides.OverrideXmlDocument("InlineXMLDocName", xml);

}

Overriding an SQL query

ruleSession.Overrides.OverrideQuery("SQLQuery1", "select Name from Customer where

id = 2");

6.1.8.4 Overriding Culture Settings at Runtime

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: RuleSession
See Also: InRule Culture Settings

The following using statements are required

using System.Threading;

using System.Globalization;

// Create CultureInfo object, passing in desired culture

CultureInfo newCulture = new CultureInfo("fr-FR");

// Assign to current thread before applying rules

Thread.CurrentThread.CurrentCulture = newCulture;

// Apply rules

Date of Publication: 3/22/2021

Source Code Examples 243

ruleSession.ApplyRules();

6.1.8.5 Rule Tracing Input and Output through irSDK

Prerequisites: none
Namespaces: InRule.Runtime, InRule.Runtime.Tracing.Events, InRule.Runtime.Tracing.Frames
Classes: FileSystemRuleApplicationReference, RuleSession, Entity
See Also: Working with the Trace Viewer through irSDK, Basic Example of Calling the Rule Engine,
Creating a RuleSession, Creating Entities

The following code sample shows methods to extract rule tracing output to various *.ruletrace and
*.xml formats. The *.ruletrace files can be opened directly in irAuthor so that trace data can be
evaluated in the trace viewer.

Tracing is enabled by setting the LogOptions Property to EngineLogOptions.RuleTrace.

During execution, a temporary file is used to persist tracing data. This file is cleaned up by the
Dispose method on the RuleSession. However, copies of the file can be persisted using the
WriteExportTrace method as shown in the example below.

RuleApplicationReference ruleAppRef = new FileSystemRuleApplicationReference(@"C:

\RuleApps\MortgageCalculator.ruleapp");

using (var session = new RuleSession(ruleAppRef))

{

session.Settings.LogOptions = EngineLogOptions.RuleTrace;

var mortgageEntity = session.CreateEntity("Mortgage");

mortgageEntity.LoadXml(@"C:\RuleApps\Mortgage.xml");

RuleExecutionLog log = null;

try

{

// Temp files are created for session during apply/execute rules,

cleaned on dispose of session

log = session.ApplyRules();

}

catch (RuntimeException ex)

{

// In the event of an error, the execution trace can still be retrieved

from the RuntimeException

log = ex.Log;

}

// Copies of trace files are generated when trace is created during

GetExecutionTrace, and cleaned on dispose of trace.

// Make sure the IExecutionTrace is disposed, so trace files are cleaned up

using (var trace = log.GetExecutionTrace())

{

// Writes out a complete "rule trace" package that includes the rule

application and trace data.

// This *.ruletrace file can be opened in irAuthor

trace.WriteExportPackage(@"C:\temp\mylog.ruletrace");

// Write out the trace frame XML

trace.WriteXml(@"C:\temp\mylog.frames.xml", new

TraceFrameXmlWriterSettings());

Date of Publication: 3/22/2021

InRule Developer Help244

// Write out the events XML

trace.EventReader.GetAllEvents().WriteXml(@"C:\temp\mylog.events.xml",

new TraceEventXmlWriterSettings());

// Write out events in a tab-delimited format that can be viewed in

Excel

trace.EventReader.GetAllEvents().WriteTabDelimited(@"C:\temp

\mylog.events.txt"); // same as clipboard

// Get only specific types of events

// Processed as a "SQL LIKE statement"

trace.EventReader.GetFilteredEvents("filtertext").WriteXml(@"C:\temp

\myfilteredlog.events.xml", new TraceEventXmlWriterSettings());

// Retrieve a "page" of event data

var firstPage = trace.EventReader.GetAllEvents().GetEventPage(1, 100);

}

}

// Rule execution trace can be populated from a previously persisted file

var executionTrace = ExecutionTrace.Load(@"C:\temp\mylog.ruletrace");

6.1.8.6 Working with the Trace Viewer through irSDK

Prerequisites: none
Namespaces: InRule.Runtime, InRule.Runtime.Testing
Classes: FileSystemRuleApplicationReference, RuleSession, Entity
See Also: Rule Tracing Input and Output through irSDK, Basic Example of Calling the Rule Engine,
Creating a RuleSession

The Trace Viewer used with irAuthor and irVerify is also accessible from the SDK. It is available as a
popup Window and an embeddable control.

Using the Trace Viewer Window

using (var trace = log.GetExecutionTrace())

{

// Call static method to launch default trace viewer

ExecutionTraceWindow.Show(trace);

//If any configuration of the window is required, the static method returns the

window object,

// which can be used to set configuration options as shown here.

// Static method returns reference window to the window in case further

configuration is required

var window = ExecutionTraceWindow.Show(trace);

// Hide export window

window.ShowExportMenu = false;

// Reusing same detail panel

window.DetailPopupMode = TraceEventDetailPopupMode.ShowInExistingWindow;

Date of Publication: 3/22/2021

Source Code Examples 245

}

Embedding the Trace Viewer Control

var log = ruleSession.LastRuleExecutionLog;

// Create an instance of the control

var view = new ExecutionTraceView();

// Specify if you want to see the Export menu (default is visible)

view.ShowExportMenu = false;

// Specify if you want the detail windows to be reused or to create a new window

each time

// Details window is displayed when clicking hyperlink or double clicking on the

row

view.DetailPopupMode = TraceEventDetailPopupMode.ShowInNewWindow;

// Load the trace into the viewer

// Options include IExecutionTrace, ExecutionLog (used here) or path to trace file

view.Load(log);

6.1.8.7 Executing a Simple Test Suite

Prerequisites: A valid test suite
Namespaces: InRule.Runtime, InRule.Runtime.Testing.Regression, InRule.Runtime.Testing.Session
Classes: TestSuiteDef, TestResultCollection, TestingSessionManager, RegressionTestingSession
See Also: Authoring a Simple Test Suite for Regression Testing

The key points in the below code sample, are that the TestingSessionManager should be used with a
using() pattern to ensure it is disposed when testing is finished. This ensures any lingering
RuleSessions are also disposed correctly.

public static void ExecuteSimpleTestSuite()

{

// Get the TestSuitePersistenceProvider from the file system

TestSuitePersistenceProvider testProvider = new

ZipFileTestSuitePersistenceProvider(@"C:\Temp\SimpleTestSuite.testsuite");

// Load the TestSuiteDef using the provider

TestSuiteDef suite = TestSuiteDef.LoadFrom(testProvider);

// Load the rule application into the test suite

suite.ActiveRuleApplicationDef = RuleApplicationDef.Load(@"C:\Temp

\SimpleRuleApp.ruleapp");

// Set up a testing manager with an InProcessConnection factory

using (TestingSessionManager manager = new TestingSessionManager(new

InProcessConnectionFactory()))

{

// Create the testing session

RegressionTestingSession session = new RegressionTestingSession(manager,

suite);

// Execute all Tests in the Test Suite - Ensure results collection is

disposed

Date of Publication: 3/22/2021

InRule Developer Help246

using (TestResultCollection results = session.ExecuteAllTests())

{

// Persist TestResults to the file system

results.SaveAs(@"C:\Temp\SimpleTestSuiteResults.testresults");

// Output result information

Console.WriteLine("{0} Test(s) executed.", results.Count);

Console.WriteLine("TestResult 1 {0}.", results[0].Passed ?

"passed" : "failed");

Console.WriteLine("TestResult 1 execution duration: {0}.",

results[0].Duration);

Console.WriteLine("TestResult 1, Assertion 1 Expected Value:

{0}.", results[0].AssertionResults[0].FormattedExpectedValue);

Console.WriteLine("TestResult 1, Assertion 1 Actual Value: {0}.",

results[0].AssertionResults[0].FormattedActualValue);

Console.WriteLine("TestResult 1, Assertion 1 Target: {0}.",

results[0].AssertionResults[0].Target);

Console.WriteLine("TestResult 1, Assertion 1 Display Text: {0}.",

results[0].AssertionResults[0].DisplayText);

}

}

}

The output looks like the following:

1 Test(s) executed.

TestResult 1 passed.

TestResult 1 execution duration: 00:00:00.2921900.

TestResult 1, Assertion 1 Expected Value: 7.

TestResult 1, Assertion 1 Actual Value: 7.

TestResult 1, Assertion 1 Target: Field2.

TestResult 1, Assertion 1 Display Text: Field2 is equal to 7.

6.1.8.8 Logging Metrics

Prerequisites: A valid RuleSession
Namespaces: InRule.Runtime
Classes: IMetricLogger, RuleSession
See Also: Retrieving a Rule Application, Creating a RuleSession

To handle the multitude of options for desired logging locations, InRule has implemented an adaptor
based model. An adaptor is a .NET assembly that is available to the rule engine that implements the
IMetricLogger interface. When this assembly exists, the engine will call out to the required methods in
the assembly to perform the actual logging. This provides customers the ability to write metrics to
any location that is required in their implementation.

At the time of this writing, there are 3 adaptors that are available in GitHub.

Microsoft® Azure® Table Storage

SQL Server

CSV (primarily for demo purposes)

To enable metrics logging

You must set the MetricLogger property in the Rule Session Settings to an instance of an object that
implements the IMetricLogger interface.

Date of Publication: 3/22/2021

Source Code Examples 247

ruleSession.Settings.MetricLogger = new CsvMetricLogger();

Example of a Metrics Logger which logs to a CSV file

public sealed class CsvMetricLogger : IMetricLogger

{

 public async Task LogMetricsAsync(string serviceId, string ruleApplicationName,

Guid sessionId, Metric[] metrics)

 {

 // for async sample see the Azure Table Storage Adaptor

 throw new NotImplementedException();

 }

 public void LogMetrics(string serviceId, string ruleApplicationName, Guid

sessionId, Metric[] metrics)

 {

 // loop through all of the metrics that are emitted by the rules engine

 // there will be one metric per entity

 foreach (Metric metric in metrics)

 {

 // get a list of the field and/or rule names

 var fields = new List<string>();

 foreach (var metricProperty in metric.Schema.Properties)

 {

 fields.Add(metricProperty.Name);

 }

 // get the value of each field or rule

 var values = new List<string>();

 foreach (var metricProperty in metric.Schema.Properties)

 {

 values.Add(metric[metricProperty].ToString());

 }

 // save them to disk in a csv file

 SaveToFile(fields, values, metric.EntityName);

 }

 }

 private void SaveToFile(List<string> fields, List<string> values, string

metricEntityName)

 {

 var fileName = $"{ConfigurationManager.AppSettings["OutputDirectory"]}

{metricEntityName}.csv";

 if (File.Exists(fileName))

 {

 // if the file already exists, append the values

 File.AppendAllText(fileName, string.Join(",", values.ToArray()) +

Environment.NewLine);

 }

 else

 {

 // if the file doesn't exist, create it and include the headers

 var s = new StringBuilder();

 s.AppendLine(string.Join(",", fields.ToArray()));

 s.AppendLine(string.Join(",", values.ToArray()));

 File.WriteAllText(fileName, s.ToString());

 }

Date of Publication: 3/22/2021

InRule Developer Help248

 }

}

For more details, refer to the CSV metrics logger sample application.

6.2 Authoring API Examples

The InRule Authoring API (also referred to as the Repository SDK) spans two functional areas:
developing against the RuleApplicationDef model and embedding authoring controls.

Developing against the Rule Application definition object model

Working with a RuleApplicationDef for Authoring

Basic Example of Creating a Rule Application in Code

Working With RuleSets

Dynamically Generating a RuleApplication Schema

Modifying EndPoints

Authoring a UDF in Code

Inline Table and Value Lists

Working with Advanced Definition Objects

Removing Templates in the Language Editor

Determine FieldDef Dependencies

Working with the Regression Tester SDK

Authoring a Simple Test Suite for Regression Testing

Embedding Authoring Controls

Embedding InRule Default Editors

Embedding the Language Rule Editor

Embedding the Decision Table Editor

Embedding the Condition Editor

6.2.1 Developing against the RuleApplicationDef Object Model

Developing against the Rule Application definition object model

Working with a RuleApplicationDef for Authoring

Basic Example of Creating a Rule Application in Code

Working With RuleSets

Dynamically Generating a RuleApplication Schema

Modifying EndPoints

Authoring a UDF in Code

Inline Table and Value Lists

https://github.com/InRule/InRule.Runtime.Metrics

Date of Publication: 3/22/2021

Source Code Examples 249

6.2.1.1 Working with a RuleApplicationDef for Authoring

Prerequisites: None
Namespaces: InRule.Repository
Classes: RuleApplicationDef, RuleAppRef, RuleCatalogConnection
See Also: Opening a RuleApplicationDef for Authoring from Catalog, Working with
RuleApplicationDef in the Catalog

The RuleApplicationDef object is used to dynamically create and modify rules and schema elements
in code.

Create new rule application

RuleApplicationDef ruleAppDef = new RuleApplicationDef();

Load existing rule application from file system

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"C:\RuleApps

\MortgageCalculator.ruleapp");

Save a rule application to the file system

ruleAppDef.SaveToFile(@"C:\RuleApps\MortgageCalculator.ruleapp");

6.2.1.2 Basic Example of Creating a Rule Application in Code

Prerequisites: None
Namespaces: InRule.Repository, InRule.Repository.RuleElements
Classes: RuleApplicationDef, EntityDef, FieldDef, RuleSetDef, SimpleRuleDef,
FireNotificationActionDef
References: InRule.Repository.dll

The RuleApplicationDef object is used to dynamically create and modify rules and schema elements
in code. The example below creates the simple rectangle rule application.

// Create a new rule application named "RectangleApp"

RuleApplicationDef ruleAppDef = new RuleApplicationDef("GeneratedRectangleApp");

// Create a rectangle entity

EntityDef entityDef = new EntityDef("Rectangle");

// Add the rectangle entity the rule application's entity collection

ruleAppDef.Entities.Add(entityDef);

// Add numeric height field

entityDef.Fields.Add(new FieldDef("Height", DataType.Number));

// Set the height default value to 4

entityDef.Fields["Height"].DefaultValue = "4";

// Add numeric width field

entityDef.Fields.Add(new FieldDef("Width", DataType.Number));

// Set the width default value to 5

Date of Publication: 3/22/2021

InRule Developer Help250

entityDef.Fields["Width"].DefaultValue = "5";

// Add numeric area calculation with syntax expression

entityDef.Fields.Add(new FieldDef("Area", "Height * Width", DataType.Number));

// Create a ruleset

RuleSetDef ruleSetDef = (RuleSetDef)entityDef.RuleElements.Add(new

RuleSetDef("MeasurementRules"));

// Create a simple if then rule with condition expression

SimpleRuleDef ruleDef = new SimpleRuleDef("Height > 0 and Width > 0");

ruleSetDef.Rules.Add(ruleDef);

// Create a notification with tokenized message

FireNotificationActionDef notificationDef = new FireNotificationActionDef();

notificationDef.NotificationMessageText = "Generated RectangleApp: Height <%Height

%> * Width <%Width%> = Area <%Area%>";

// Add the notification as an action under the if then rule

ruleDef.SubRules.Add(notificationDef);

// Save the rule application to the file system

ruleAppDef.SaveToFile(@"c:\temp\Rectangle.ruleapp");

6.2.1.3 Working with RuleSets

Prerequisites: A valid RuleApplicationDef and EntityDef
Namespaces: InRule.Repository
Classes: RuleApplicationDef, EntityDef, RuleSetDef
References: InRule.Repository.dll
See Also: Dynamically Generating a Rule Application Schema

The following code samples demonstrate how to retrieve and work with RuleSets for authoring
purposes.

Get a list of RuleSets from an EntityDef

// This will return all top level RuleSets off of an Entity

RuleSetDef[] ruleSets = entityDef.GetRuleSets();

Get a list of all RuleSets from an EntityDef

// This will return all RuleSets off of an Entity, including RuleSets that are

under Rule Folders

RuleSetDef[] ruleSets = entityDef.GetAllRuleSets();

Get a specific RuleSet by name from an EntityDef

// This will return a single RuleSetDef

RuleSetDef ruleSetDef = entityDef.GetRuleSet("MyRuleSet");

Get a list of independent RuleSets

// This will return a collection of independent RuleSets

RuleSetDefBaseCollection indRuleSets = ruleAppDef.RuleSets;

Date of Publication: 3/22/2021

Source Code Examples 251

Get a specific independent RuleSet

// This will return a collection of independent RuleSets
RuleSetDef indRuleSet = ruleAppDef.GetRuleSet("MyIndRuleSet");

Enable/Disable a RuleSet

// This will turn off the RuleSet, making it unavailable at runtime

// A disabled RuleSet cannot be turned on at runtime

ruleSetDef.IsActive = false;

Set Default Activation of a RuleSet

// This will turn off the default activation for the RuleSet

// A RuleSet that is enabled, can be activated or deactivated at runtime via rules

or the SDK

ruleSetDef.DefaultActivation = false;

Set RuleSet Run Mode

// This will set the run mode to sequential

ruleSetDef.RunMode = RuleSetRunMode.Sequential;

Set RuleSet Fire Mode

// This will set the fire mode to explicit

ruleSetDef.FireMode = RuleSetFireMode.Explicit;

6.2.1.4 Dynamically Generating a Rule Application Schema

Prerequisites: A valid RuleApplicationDef
Namespaces: InRule.Repository, InRule.Repository.EndPoints,
InRule.Repository.ViewsAndControllers
Classes: RuleApplicationDef, XmlSchemaDef, XmlSchemaDefController, AssemblyDef,
AssemblyDefController
References: InRule.Repository.dll

The following examples demonstrate how to dynamically generate a rule application schema using a
.NET assembly and an XSD.

Generate Rule Application Schema using an XSD

// Create the schema def object using a name for the schema and the path to the Xsd

file

XmlSchemaDef schemaDef = new XmlSchemaDef("XsdSchemaName", FilePath +

"invoice.xsd");

// Embed the schema in the rule app (optional)

schemaDef.UseEmbeddedXsd = true;

// Set whether validation should run when loaded (default is true)

schemaDef.EnableXsdValidation = true;

// Add the schema def object to the rule application as an end point

ruleAppDef.EndPoints.Add(schemaDef);

// Create the schema controller which will do the import of the Xsd

XmlSchemaDefController controller = new XmlSchemaDefController(schemaDef);

Date of Publication: 3/22/2021

InRule Developer Help252

// Do the import

controller.Import(FilePath + "invoice.xsd");

// Generate the rule application schema

string[] applyWarns = controller.Apply();

// Process warnings if there were any

if (applyWarns.Length > 0)

{

 // handle warnings/errors

}

// Bind Fields that map to xs:enumeration restriction types to a ValueList during

import

schemaDef.BindEnumerationFieldsToValueLists = true;

// Disable creation of Constraint rules for Fields that map to xs:enumeration

restriction types during import

schemaDef.CreateConstraintsForEnumerationFields = false;

Generate Rule Application Schema using a .NET Assembly

// Create Assembly and Assembly controller def objects, set isSchema to true

AssemblyDef assemblyDef = new AssemblyDef("InvoiceObject", true);

AssemblyDefController assemblyDefController = new

AssemblyDefController(assemblyDef);

// Import the assembly, notes can be captured during import

string[] importNotes =

assemblyDefController.Import("InvoiceObjects.dll").EntityDefsInfo.Notes;

// Get top level class by alias

AssemblyDef.ClassInfo topLevelClass =

assemblyDef.ClassInfos.GetByAliasName("Invoice");

// Select all dependent entities for the top level class

assemblyDefController.CheckAllSelectedDependentEntities(topLevelClass);

// Add the assembly to the EndPoints collection (will appear as schema in irAuthor)

ruleAppDef.EndPoints.Add(assemblyDef);

// Generate the schema, notes can be captured during schema generation

string[] applyNotes = assemblyDefController.Apply();

// Bind Fields that map to Enum types to a ValueList during import

assemblyDef.BindEnumerationFieldsToValueLists = true;

// Disable creation of Constraint rules for Fields that map to Enum types during

import

assemblyDef.CreateConstraintsForEnumerationFields = false;

Generate Rule Application Schema using a Database

// Create new end point

DatabaseConnection sch = (DatabaseConnection)ruleAppDef.EndPoints.Add(new

DatabaseConnection("DbConn1", connectionString));

// Set up end point to be a schema

Date of Publication: 3/22/2021

Source Code Examples 253

sch.IsSchemaDefining = true;

// Create controller that will perform the import

DatabaseConnectionController controller = new DatabaseConnectionController(sch);

// Do the import

controller.Import();

// Apply changes to the rule app, catching any errors that may have occurred

string[] errors = controller.Apply();

6.2.1.5 Modifying EndPoints

Prerequisites: A valid RuleApplicationDef
Namespaces: InRule.Repository, InRule.Repository.EndPoints
Classes: RuleApplicationDef, EndPointDef, DatabaseConnection
References: InRule.Repository.dll
See Also: Dynamically Gererating a Rule Application Schema

The following code sample demonstrates how to modify the connection string of a Database
Connection EndPoint.

// Get endpoint from loaded RuleApplicationDef object

EndPointDef endPointDef = ruleAppDef.EndPoints["DatabaseConnection1"];

// Cast into a DatabaseConnection object

DatabaseConnection dbConn = (DatabaseConnection)endPointDef;

// Update the connection string

dbConn.ConnectionString = newConnectionString;

6.2.1.6 Authoring a UDF in Code

Prerequisites: None
Namespaces: InRule.Repository, InRule.Repository.RuleElements
Classes: RuleApplicationDef, EntityDef, FieldDef, RuleSetDef, UdfLibraryDef, UdfDef,
UdfArgumentDef, CalcDef, ExecuteMethodActionDef, ExecuteMethodActionParamDef
References: InRule.Repository.dll

The sample code snippet below illustrates authoring an UDF and using an ExecuteMethodActionDef to
execute the UDF.

// Create a ruleapplication

RuleApplicationDef ruleAppDef = new RuleApplicationDef();

EntityDef entity1 = ruleAppDef.Entities.Add(new EntityDef("Entity1"));

entity1.Fields.Add(new FieldDef("InputText"));

entity1.Fields.Add(new FieldDef("Pattern"));

// Add a UDF library

UdfLibraryDef udfLibrary = new UdfLibraryDef("StringFunctionsLibrary");

// Define UDF to match a string for a given pattern

UdfDef udf = new UdfDef("IsPatternMatch");

// Input arguments

UdfArgumentDef arg1 = new UdfArgumentDef("InputText");

Date of Publication: 3/22/2021

InRule Developer Help254

arg1.ArgumentTypeInfo.DataType = DataType.String;

udf.FunctionArguments.Add(arg1);

UdfArgumentDef arg2 = new UdfArgumentDef("Pattern");

arg2.ArgumentTypeInfo.DataType = DataType.String;

udf.FunctionArguments.Add(arg2);

// Return type

udf.ReturnTypeInfo.DataType = DataType.Boolean;

// Function declaration

CalcDef func = new CalcDef();

func.FormulaText = "return InputText.Contains(Pattern);";

udf.FunctionBody = func;

// Add UDF to the library

udfLibrary.UserDefinedFunctions.Add(udf);

ruleAppDef.UdfLibraries.Add(udfLibrary);

// Add an execute method action to execute UDF

RuleSetDef rs1 = new RuleSetDef("r1");

ExecuteMethodActionDef execUdf = new ExecuteMethodActionDef();

execUdf.AliasName = "StringFunctionsLibrary";

execUdf.MethodName = "IsPatternMatch";

ExecuteMethodActionParamDef p1 = new ExecuteMethodActionParamDef("abcdeedef",

"InputText");

execUdf.ParameterValues.Add(p1);

ExecuteMethodActionParamDef p2 = new ExecuteMethodActionParamDef("deed",

"Pattern");

execUdf.ParameterValues.Add(p2);

rs1.Rules.Add(execUdf);

entity1.RuleElements.Add(rs1);

6.2.1.7 Inline table and Value lists access

Namespaces: InRule.Repository, InRule.Repository.RuleElements,
Classes: RuleApplicationDef, TableDef
See Also:
References: InRule.Repository.dll, InRule.Common.dll

There are changes to the techniques used to access inline tables; in InRule SDK 4.5 and later these

are accessed through the RuleAppDef see below:

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"c:\temp\test.ruleapp");

// Loop through all the data elements

foreach (var dataDef in ruleAppDef.DataElements)

{

 // try to cast the dataDef into a tableDef - if this fails

 // then we will ignore the dataDef since we will only process tables

 TableDef tableDef = dataDef as TableDef;

 if (tableDef != null)

 {

 // Check its an inline table - will not process linked tables

 if (tableDef.TableSettings.TableSourceType == TableSourceType.Inline)

 {

Date of Publication: 3/22/2021

Source Code Examples 255

 // get the name

 string tableName = tableDef.Name;

 // Get the data - this adds all the cols in the table

 List<string> columnNames = new List<string>();

 foreach (var col in tableDef.TableSettings.InlineDataTable.Columns)

 {

 columnNames.Add(col.ToString());

 }

 // Iterate the rows in the table and rows to XML

 foreach (System.Data.DataRow dr in

tableDef.TableSettings.InlineDataTable.Rows)

 {

 // only access the fields in the collection of names- you could

 // filter using this.

 foreach (string colName in columnNames)

 {

 // get the data for each column name

 string rowItemData = "";

 rowItemData = string.Format("Name:{0} Value:{1}", colName,

dr[colName].ToString());

 }

 }

 }

 }

}

6.2.2 Working with Advanced Definition Objects

Working with Advanced Definition Objects

Removing Templates in the Language Editor

Determine FieldDef Dependencies

6.2.2.1 Removing Templates in the Language Editor

Prerequisites: A valid RuleSession, A valid Entity
Namespaces: InRule.Repository, InRule.Repository.Vocabulary, InRule.Repository.Templates
Classes: RuleApplicationDef, TemplateDef
See Also: Embedding the Language Rule Editor
References: InRule.Repository.dll

The following example demonstrates how to remove Templates from the Business Language Editor.
This code must run before the Populate method for the Business Language Editor is called.

Removing built in InRule Templates

// Create a new VocabularyDef if Vocabulary is null

Date of Publication: 3/22/2021

InRule Developer Help256

if (ruleAppDef.Vocabulary == null)

{

ruleAppDef.Vocabulary = new VocabularyDef();

}

// Remove the "Minus" template by adding a TemplateAvailabilitySettings and

setting availability to Exclude

ruleAppDef.Vocabulary.TemplateAvailabilitySettings.Add(TemplateLiterals

.TemplateGuids.Minus,

InRule.Repository.Vocabulary.TemplateAvailability.Exclude);

Removing Rule Templates

// Make sure the Vocabulary is not null

if (ruleAppDef.Vocabulary == null)

{

 // Create a new VocabularyDef if null

 ruleAppDef.Vocabulary = new VocabularyDef();

}

// Get rule template by name (Note: this is not the same as the Display Name)

TemplateDef templateDef = (TemplateDef)

ruleAppDef.Vocabulary.Templates["ExpressionTemplateDef1"];

// Remove the template using it's GUID

ruleAppDef.Vocabulary.TemplateAvailabilitySettings.Add(templateDef.Guid,

 TemplateAvailability.Exclude);

6.2.2.2 Determine FieldDef Dependencies

 Prerequisites: A valid RuleRepositoryDefBase, A valid EvalNetwork
 Namespaces: InRule.Repository, InRule.Repository.Infos
 Classes: RuleApplicationDef, RuleRepositoryDefBase, DefUsageNetwork, FieldDef
 References: InRule.Common.dll, InRule.Repository.dll

Determine FieldDef Dependencies

The following recursive method shows how to identify all FieldDef dependencies for a given
RuleRepositoryDefBase object.

public static IEnumerable<DefUsage> GetDependentFieldDefs(RuleRepositoryDefBase

def, DefUsageNetwork network)

{

// Create collection of all usages by the given definition

var usages = network.GetDefUsages(def.Guid, true);

// Return list of dependencies

return usages;

}

Instantiate the DefUsageNetwork

The following code snippet demonstrates the proper way to create an instance of the
DefUsageNetwork.

public static DefUsageNetwork GetDefUsageNetwork(RuleApplicationDef ruleAppDef)

{

return DefUsageNetwork.Create(ruleAppDef);

}

Date of Publication: 3/22/2021

Source Code Examples 257

6.2.3 Working with the Regression Tester SDK

Working with the Regression Tester SDK

Authoring a Simple Test Suite for Regression Testing

6.2.3.1 Authoring a Simple Test Suite for Regression Testing

Prerequisites: none
Namespaces: InRule.Repository, InRule.Repository.Regression
Classes: RuleApplicationDef, EntityDef, FieldDef, RuleSetDef, SimpleRuleDef,
FireNotificationActionDef, SetValueActionDef, AddCollectionMemberActionDef, TestSuiteDef,
DataStateDef, TestContextDef, DataStateMappingDef, ZipFileTestSuitePersistenceProvider
References: InRule.Repository.dll,

The following illustrates the creation of a Rule Application and Test Suite with irSDK. Both are saved
as files to the C:\Temp directory. This directory should be created with write privileges before
testing. The test suite generated by this sample can be used with the sample code for Executing a
Simple Test Suite.

The Rule Application below performs 4 different actions if Field1 is greater than zero. Although Field1
is a String field, the rule uses implicit casting to compare it as an integer. The RuleSet is set to use
the Auto fire mode, so ApplyRules is used to execute this rule. The Test Suite creation in the second
method illustrates how the Test and Data State are set up, and also how the Assertions are authored
to validate the 4 rules that fire, along with checking that the IfThen rule fired. The important points
to note are:

The RuleApplicationDef is assigned to the TestSuiteDef right after creating it. This should
always be one of the first actions performed.

The DataStateDef is assigned to both the TestSuiteDef.RootDataFolder and the TestDef’s
DataStates collection.

The TestDef is created by passing a TestContextDef instance to the constructor that was
created from the EntityDef of the root entity.

In this case, the TestDef is added to the TestSuiteDef.RootTestFolder, but it could have been
added to a FolderDef hierarchy that we will see in the next example.

The Assertions use object-relational path notation to address the Rule Application schema, as
opposed to XPath notation.

Not all Assertions require an ExpectedValue and ExpectedValueType.

The files generated from these two methods can be loaded into irAuthor and irVerify:

1. Load C:\Temp\SimpleRuleApp.ruleapp into irAuthor.

2. Launch irVerify from the Entity1 context.

3. Use the File menu to load the C:\Temp\SimpleTestSuite.testsuite file.

4. By clicking on the Test1 tree node, the 5 Assertions will be visible in the Business Language
editor.

5. The Test control should show that DataState1 is being used, and that ApplyRules will be
performed.

6. By clicking the ‘Run All’ button, the tests will execute, and all Assertions should pass.

7. By clicking the ‘Edit’ button next to the Data State drop-down menu on the Test control, the
initial state that was stored in the Data State may be viewed, edited and tested in a familiar
irVerify style window.

public static RuleApplicationDef CreateTestingRuleApp()

Date of Publication: 3/22/2021

InRule Developer Help258

{

RuleApplicationDef ruleApp = new RuleApplicationDef("SetValueTest");

EntityDef entity = new EntityDef("Entity1");

ruleApp.Entities.Add(entity);

FieldDef field1 = new FieldDef("Field1", DataType.String);

FieldDef field2 = new FieldDef("Field2", DataType.Integer);

FieldDef collection1 = new FieldDef("Collection1", DataType.collection);

FieldDef field3 = new FieldDef("Field3", DataType.DateTime);

collection1.FieldDefType = FieldDefType.Collection;

collection1.Fields.Add(field3);

entity.Fields.Add(field1);

entity.Fields.Add(field2);

entity.Fields.Add(collection1);

RuleSetDef ruleSet = new RuleSetDef("RuleSet1");

ruleSet.FireMode = RuleSetFireMode.Auto;

ruleSet.RunMode = RuleSetRunMode.Sequential;

entity.RuleElements.Add(ruleSet);

SimpleRuleDef ifthen = new SimpleRuleDef("IfThen1", "Field1 > 0");

ifthen.SubRules.Add(new SetValueActionDef("Field2", "Field1 + 5"));

ifthen.SubRules.Add(new AddCollectionMemberActionDef("Collection1"));

ifthen.SubRules.Add(new SetValueActionDef("Collection1(1).Field3", "Now()"));

FireNotificationActionDef notification = new

FireNotificationActionDef("Notification1");

notification.NotificationType = NotificationType.Informational;

notification.NotificationMessageText = "Test Notification";

ifthen.SubRules.Add(notification);

ruleSet.Rules.Add(ifthen);

ruleApp.SaveToFile(@"C:\Temp\SimpleRuleApp.ruleapp");

return (ruleApp);

}

public static TestSuiteDef WriteSimpleTestSuite()

{

// Create a new Test Suite

TestSuiteDef suite = TestSuiteDef.Create();

suite.Settings.Name = "SimpleTestSuite";

suite.ActiveRuleApplicationDef = CreateTestingRuleApp();

// Create an EntityState Data State with the initial state

DataStateDef dataState = new DataStateDef();

dataState.DisplayName = "DataState1";

dataState.RootEntityName = "Entity1";

dataState.DataStateType = DataStateType.EntityState;

dataState.StateXml = "<Entity1><Field1>2</Field1></Entity1>";

suite.RootDataFolder.Members.Add(dataState);

// Create a Test and set the Data State as the root mapping

EntityDef entity1 = suite.ActiveRuleApplicationDef.Entities["Entity1"];

TestDef test = new TestDef(TestContextDef.Create(entity1));

test.DisplayName = "Test1";

test.DataStates.Add(new DataStateMappingDef(dataState));

suite.RootTestsFolder.Members.Add(test);

Date of Publication: 3/22/2021

Source Code Examples 259

// Create an Assertion to check that Field2 equals 7

AssertionDef assertion = new AssertionDef();

assertion.AssertionType = AssertionType.FieldIsEqualToX;

assertion.TargetElementPath = "Entity1.Field2";

assertion.ExpectedValue = "7";

assertion.ExpectedValueType = ExpectedValueDataType.Integer;

test.Assertions.Add(assertion);

// Create an Assertion to check that there is 1 collection memeber

assertion = new AssertionDef();

assertion.AssertionType = AssertionType.CollectionCountIsX;

assertion.TargetElementPath = "Entity1.Collection1";

assertion.ExpectedValue = "1";

assertion.ExpectedValueType = ExpectedValueDataType.Integer;

test.Assertions.Add(assertion);

// Create an Assertion to check the DateTime in Field3

assertion = new AssertionDef();

assertion.AssertionType = AssertionType.FieldIsAfterX;

assertion.TargetElementPath = "Entity1.Collection1(1).Field3";

assertion.ExpectedValue = "#01/01/2000 00:00#";

assertion.ExpectedValueType = ExpectedValueDataType.DateTime;

test.Assertions.Add(assertion);

// Create an Assertion to check a Notification fired

assertion = new AssertionDef();

assertion.AssertionType = AssertionType.NotificationFired;

assertion.TargetElementPath = "Entity1.RuleSet1.IfThen1.Notification1";

test.Assertions.Add(assertion);

// Create an Assertion to check that the IfThen rule fired

assertion = new AssertionDef();

assertion.AssertionType = AssertionType.RuleFired;

assertion.TargetElementPath = "Entity1.RuleSet1.IfThen1";

test.Assertions.Add(assertion);

// Persist Test Suite to file system

suite.SaveAs(new ZipFileTestSuitePersistenceProvider(@"C:\Temp

\SimpleTestSuite.testsuite"));

return (suite);

}

6.2.4 Embedding Authoring Controls

Embedding Authoring Controls

Embedding InRule Default Editors

Embedding the Language Rule Editor

Date of Publication: 3/22/2021

InRule Developer Help260

Embedding the Decision Table Editor

Embedding the Condition Editor

6.2.4.1 Embedding InRule Default Editors

Namespaces: InRule.Repository, InRule.Repository.RuleElements, InRule.Authoring.Controls,
InRule.Authoring.Editors, InRule.Authoring.Editors.Controls
Classes: RuleApplicationDef, ControlFactory
See Also: Opening a RuleApplicationDef for Authoring, WinForm Considerations
References: InRule.Repository.dll, InRule.Authoring.dll, InRule.Authoring.BusinessLanguage.dll,
InRule.Authoring.Editors.dll, InRule.Common.dll

Loading the default editors

The following code works in WPF. This same code can be used for retrieving all editors as the
GetControl method takes a RuleRepositoryDefBase type. The editor that is returned is based on the
type of definition object that is passed in. In this example, the Fire Notification Action is used.

// Create an instance of the control factory (consider keeping this at form level

to reuse where appropriate)

ControlFactory controlFactory = new ControlFactory();

// Load ruleapplicationdef

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"c:\work

\mortgagecalculator.ruleapp");

// Load the rule application into the control factory

controlFactory.OpenRuleApplication(ruleAppDef);

// Get the entity

EntityDef entityDef = ruleAppDef.Entities["Mortgage"];

// Get the rule to edit (any RuleRepositoryDefBase can be passed in)

FireNotificationActionDef ruleDef = (FireNotificationActionDef)

entityDef.GetRuleSet("PaymentRules").Rules["PaymentNotification"];

// Get the business language editor and load into ContentControl

var control = controlFactory.GetControl(ruleAppDef);

Saving the changes

// Get the control from the form

if (control is IValidatingEditor)

{

// Save the changes back to the rule application

((IValidatingEditor)control).SaveValues();

}

// Dispose of the control if it implements IDisposable

if (control is IDisposable)

{

((IDisposable)control).Dispose();

}

// Save the rule application back to the file system (this can also be saved to the

Date of Publication: 3/22/2021

Source Code Examples 261

Catalog)

ruleAppDef.SaveToFile(@"c:\work\mortgagecalculator.ruleapp");

6.2.4.2 Embedding the Language Rule Editor

Namespaces: InRule.Repository, InRule.Repository.RuleElements,
InRule.Authoring.BusinessLanguage, InRule.Authoring.Controls, InRule.Authoring.Editors,
InRule.Authoring.Editors.Controls
Classes: RuleApplicationDef, LanguageRuleDef, BusinessLanguageEditor, ControlFactory
See Also: Opening a RuleApplicationDef for Authoring, WinForm Considerations
References: InRule.Repository.dll, InRule.Authoring.dll, InRule.Authoring.BusinessLanguage.dll,
InRule.Authoring.Editors.dll, InRule.Common.dll

Loading the business language editor into a ContentControl

The following code works in WPF. Loading the control in this manner will only load the control, the
Name and Enabled fields will not be present. To embed the entire control see here.

// Create an instance of the control factory (consider keeping this at form level

to reuse where appropriate)

ControlFactory controlFactory = new ControlFactory();

// Load ruleapplicationdef

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"c:\work

\mortgagecalculator.ruleapp");

// Load the rule application into the control factory

controlFactory.OpenRuleApplication(ruleAppDef);

// Get the entity

EntityDef entityDef = ruleAppDef.Entities["Mortgage"];

// Get the language rule to edit

LanguageRuleDef ruleDef = (LanguageRuleDef)

entityDef.GetRuleSet("PaymentRules").Rules["CalcPaymentSummary"];

// Get the business language editor and load into ContentControl

var control = controlFactory.CreateBusinessLanguageEditor(ruleDef);

Saving the changes

// Get the control from the form

if (control is BusinessLanguageEditor)

{

// Save the changes back to the rule application

control.Save();

}

// Dispose of the control if it implements IDisposable

if (control is IDisposable)

{

control.Dispose();

}

// Save the rule application back to the file system (this can also be saved to the

Catalog)

ruleAppDef.SaveToFile(@"c:\work\mortgagecalculator.ruleapp");

Date of Publication: 3/22/2021

InRule Developer Help262

6.2.4.3 Embedding the Decision Table Editor

Namespaces: InRule.Repository, InRule.Repository.RuleElements,
InRule.Authoring.BusinessLanguage, InRule.Authoring.Controls, InRule.Authoring.Editors,
InRule.Authoring.Editors.Controls, InRule.Repository.DecisionTables
Classes: RuleApplicationDef, DecisionTableControl, ControlFactory
See Also: Opening a RuleApplicationDef for Authoring, WinForm Considerations
References: InRule.Repository.dll, InRule.Authoring.dll, InRule.Authoring.BusinessLanguage.dll,
InRule.Authoring.Editors.dll, InRule.Common.dll

Loading the decision table editor into a ContentControl

The following code works in WPF. Loading the control in this manner will only load the control, the
Name and Enabled fields will not be present. To embed the entire control see here.

// Create an instance of the control factory (consider keeping this at form level

to reuse where appropriate)

ControlFactory controlFactory = new ControlFactory();

// Load ruleapplicationdef

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"c:\work

\invoice.ruleapp");

// Get the entity

EntityDef entityDef = ruleAppDef.Entities["Mortgage"];

// Get the decision table to edit

DecisionTableDef decisionTableDef = (DecisionTableDef)

entityDef.GetRuleSet("InvoiceRules").Rules["CommissionTable"];

// Load decision table editor into content control

var control = controlFactory.CreateDecisionTableControl(decisionTableDef);

Saving the changes

// Changes from the decision table control are automatically saved back to the rule

app

// So we are just going to save rule app to file system (or Catalog if desired)

ruleAppDef.SaveToFile(@"c:\work\invoice.ruleapp");

6.2.4.4 Embedding the Condition Editor

Namespaces: InRule.Repository, InRule.Repository.RuleElements,
InRule.Authoring.BusinessLanguage, InRule.Authoring.Controls, InRule.Authoring.Editors,
InRule.Authoring.Editors.Controls
Classes: RuleApplicationDef, ControlFactory
See Also: Opening a RuleApplicationDef for Authoring, WinForm Considerations
References: InRule.Repository.dll, InRule.Authoring.dll, InRule.Authoring.BusinessLanguage.dll,
InRule.Authoring.Editors.dll, InRule.Common.dll

Loading the condition editor into a ContentControl

The following code works in WPF. Loading the control in this manner will only load the control, the
Name and Enabled fields will not be present. To embed the entire control see here.

Date of Publication: 3/22/2021

Source Code Examples 263

// Create an instance of the control factory (consider keeping this at form level

to reuse where appropriate)

ControlFactory controlFactory = new ControlFactory();

// Load ruleapplicationdef

RuleApplicationDef ruleAppDef = RuleApplicationDef.Load(@"c:\work

\mortgagecalculator.ruleapp");

// Get the entity

EntityDef entityDef = ruleAppDef.Entities["Mortgage"];

// Get the decision table to edit

SimpleRuleDef simpleRuleDef = (SimpleRuleDef)

entityDef.GetRuleSet("CalcPaymentSchedule").Rules["IfLoanIsValid"];

// Load condition editor into content control, defaulting to business language mode

(false for last parameter will load in syntax mode)

var control = controlFactory.CreateConditionEditor(simpleRuleDef,

simpleRuleDef.Condition.FormulaText,

true);

Saving the changes

if (control != null)

{

// Call save values

control.SaveValues();

// If user is in syntax mode, then we need to manually save the changes back to

the rule

if (!control.UseLanguageExpression)

{

// Get the rule from the editor

var contextDef = (SimpleRuleDef)control.ContextDef;

// Update the definition object

contextDef.ConditionExpression = control.Expression;

}

}

6.3 Catalog API Examples

The InRule Catalog API demonstrates how to retrieve and work with rule applications that are stored
in the InRule Catalog.

Developing with rule applications stored in the Catalog

Creating a RuleCatalogConnection

Opening a RuleApplicationDef for Authoring from Catalog

Working with RuleApplicationDef in the Catalog

Working with Rule Elements in the Catalog

Sharing Elements in the Catalog

Performing Rollbacks in the Catalog

Date of Publication: 3/22/2021

InRule Developer Help264

Promote a Rule Application from Catalog to Catalog

6.3.1 Creating a RuleCatalogConnection

Prerequisites: None
Namespaces: InRule.Repository.Client
Classes: RuleCatalogConnection

The rule catalog connection object is used to obtain the RuleApplicationDef from the catalog for
authoring rules in code.

Creating a Catalog connection with URI

// Create a RuleCatalogConnection passing in the catalog URI

RuleCatalogConnection connection = new RuleCatalogConnection(new

Uri(repositoryUri));

Creating a Catalog connection with credentials

// Create a RuleCatalogConnection passing in the catalog URI and login credentials

RuleCatalogConnection connection = new RuleCatalogConnection(new

Uri(repositoryUri),new TimeSpan(0,10,0),"Admin","password");

Getting a Catalog connection with oAuthManager

 var settings = new OAuthSettings();
 settings.Audience = "YOUR_VALUE";
 settings.ClientId = "YOUR_VALUE";
 settings.Authority = "YOUR_VALUE";
 settings.RedirectUri = "YOUR_VALUE";
 settings.LogoutUrl = "YOUR_VALUE";

 var oAuthManager = new OAuthManager(settings);

// Gets a RuleCatalogConnection from your oAuthManager instance

RuleCatalogConnection connection =

 oAuthManager.CreateCatalogConnectionAsync(repositoryUri, new TimeSpan(0,10,0),

false);

6.3.2 Opening a RuleApplicationDef for Authoring from Catalog

Prerequisites: None
Namespaces: InRule.Repository
Classes: RuleApplicationDef, RuleAppRef, RuleCatalogConnection
See Also: Creating a RuleCatalogConnection, Opening a Rule ApplicationDef for Authoring

The RuleApplicationDef object is used to dynamically create and modify rules and schema elements
in code.

Load a specific revision of a rule application from the catalog

// Get a RuleAppRef object which will contain details about the rule app we are

Date of Publication: 3/22/2021

Source Code Examples 265

loading

RuleAppRef ruleAppRef = connection.GetRuleAppRef("InvoiceApp");

// Load the RuleApplicationDef from the repository, specifying the GUID and

Revision

// This can be retrieved by name or GUID, with option to specify label and revision

RuleApplicationDef ruleAppDef =

connection.GetSpecificRuleAppRevision(ruleAppRef.Guid, ruleAppRef.PublicRevision);

Load the latest revision of a rule application from the catalog

// Load the RuleApplicationDef from the repository, specifying the name

RuleApplicationDef ruleAppDef = connection.GetLatestRuleAppRevision("RuleAppName");

6.3.3 Working with RuleApplicationDef in the Catalog

Prerequisites: A valid RuleCatalogConnection and RuleApplicationDef object
Namespaces: InRule.Repository, InRule.Repository.Client, InRule.Repository.Service.Data
Classes: RuleCatalogConnection, RuleApplicationDef

The following examples demonstrate how to save, check-in and check-out rule applications and their
granular elements from the Catalog service.

Create new rule application in the Catalog

// save a new rule application to the Catalog

connection.CreateRuleApplication(ruleAppDef, "New app description");

Save a rule application in the Catalog without checking in

// Save pending changes without checking them in

connection.Save(ruleAppDef);

Note: The rule application is stored in a user specific location and will allow saving even if validation
errors exist.

Check out a rule application from the Catalog

// Check out the rule application

connection.CheckoutRuleApplication(ruleAppDef, false, "comments");

Check out a rule application from the Catalog along with the Schema

// Check out the rule application and the schema

connection.CheckoutRuleApplicationAndSchema(ruleAppDef, "comments");

Note: The rule application must be checked out in order to check out the schema.

Check in a rule application to the Catalog

// Check in pending changes

// This will check in all pending changes on the rule app

connection.Checkin(ruleAppDef, "comments");

Undoing a checkout for a rule application in the Catalog

// Undo the check out of the rule app

// This will undo all checked out elements of the rule application

connection.UndoRuleAppCheckout(ruleAppDef);

Determine if a rule application exists in the Catalog

// This will return a boolean stating whether or not the rule application exists in

Date of Publication: 3/22/2021

InRule Developer Help266

the Catalog by name

// Overloads exist for name, name and revision, name and label

connection.DoesRuleAppExist("MortgageCalculator");

6.3.4 Working with Rule Elements in the Catalog

Prerequisites: A valid RuleCatalogConnection and RuleApplicationDef object
Namespaces: InRule.Repository, InRule.Repository.Client, InRule.Repository.Service.Data
Classes: RuleCatalogConnection, RuleApplicationDef, EntityDef, RuleRepositoryDefBase
See Also: Working with RuleApplicationDef in the Catalog

The following examples demonstrate how to check-out rule application elements from the Catalog.

Note: When checking in or saving an element, the entire RuleApplicationDef is checked in or saved,
not just the element that you are working with. See Working with RuleApplicationDef in the Catalog
to see how to perform these actions.

Check out a RuleSet from the Catalog

// Get EntityDef

EntityDef entityDef = ruleAppDef.Entities["Invoice"];

// Get the RuleSet off of the EntityDef

RuleRepositoryDefBase ruleSetDef = entityDef.GetRuleSet("DiscountRules");

// Check out the RuleSet

connection.CheckoutDef(ruleAppDef, ruleSetDef, "comments");

Check out a DataElement from the Catalog

// Get the DataElement (a table in this case)

RuleRepositoryDefBase table = ruleAppDef.DataElements["Customer"];

// Check out the DataElement

connection.CheckoutDef(ruleAppDef, table, "comments");

6.3.5 Sharing Elements in the Catalog

Prerequisites: A valid RuleCatalogConnection and RuleApplicationDef object
Namespaces: InRule.Repository, InRule.Repository.Client, InRule.Repository.Service.Data
Classes: RuleCatalogConnection, RuleApplicationDef, EntityDef, RuleRepositoryDefBase
See Also: Working with RuleApplicationDef in the Catalog

The following examples demonstrate how to share and consume rule elements in the Catalog.

Sharing a rule set

// set ruleset shareable

catalogConn.SetShareableFlagForDef(ruleAppDef.Entities["Entity1"].RuleElements["Rul

eSet1"].Guid, true);

Consuming a shared rule set in an existing rule application

// Get source rule app

RuleApplicationDef sharedRuleApp =

catalogConn.GetLatestRuleAppRevision("SharedRuleApp");

// Get rule set to consume from source rule app

Date of Publication: 3/22/2021

Source Code Examples 267

RuleSetDef ruleSetDef = sharedRuleApp.Entities["Entity1"].GetRuleSet("RuleSet1");

// Get consuming rule app

RuleApplicationDef consumingRuleApp =

catalogConn.GetLatestRuleAppRevision("ConsumingRuleApp");

// Check out the rule app container

catalogConn.CheckoutRuleApplication(consumingRuleApp, false, "checkout comments");

// Cet entity where rule set will be added

EntityDef entityDef = consumingRuleApp.Entities["Entity1"];

// Add shared rule set, using same Guids will create the share

entityDef.RuleElements.Add(ruleSetDef.CopyWithSameGuids());

// Check in the rule application

catalogConn.Checkin(consumingRuleApp, "check in comments");

Sharing a schema

// Share the schema so it can be consumed by other rule applications

catalogConn.SetShareableFlagForDef(sharedRuleApp.SchemaGuid, true);

Binding the shared schema to a rule application

// Bind the rule

catalogConn.SetMasterRuleAppForDef(sharedRuleApp.SchemaGuid, sharedRuleApp.Guid);

// Create new rule application that will consume the shared schema

RuleApplicationDef consumerRuleApp = new RuleApplicationDef("ConsumingRuleApp");

// Add the rule application to the Catalog

catalogConn.CreateRuleApplication(consumerRuleApp, consumerRuleApp.Name);

// Check out the rule application

catalogConn.CheckoutRuleApplication(consumerRuleApp, true, "checkout consumer

ruleapp");

// Get all shared elements in the Catalog

ResultMap<DefInfo, DefInfo> shareableDefs = catalogConn.GetAllShareableDefs();

// Using a Linq query to find the schema we are interested in by name

DefInfo sharedSchemaDefInfo = (

 from d in shareableDefs.Keys

 where d.MasterRuleappName == "SharedRuleApp" &&

d.Key.DefType.Equals(typeof(RuleApplicationSchemaDef))

 select d).First();

// Add the shared schema to the derived rule app

consumerRuleApp = catalogConn.ReplaceRuleAppSchema(consumerRuleApp,

sharedSchemaDefInfo.Key);

// Check-in rule app

catalogConn.Checkin(consumerRuleApp, "Comments");

6.3.6 Performing Rollbacks in the Catalog

Prerequisites: A valid RuleCatalogConnection

Date of Publication: 3/22/2021

InRule Developer Help268

Namespaces: InRule.Repository, InRule.Repository.Client, InRule.Repository.Service.Data
Classes: RuleCatalogConnection, RuleApplicationDef, RuleAppRef, RuleRepositoryDefBase
See Also: Creating a RuleCatalogConnection

The following examples demonstrate how to perform rollback functionality in the Catalog. The
functionality does not perform a true rollback, instead it will save the previously desired rule
application or rulse set back to the Catalog as the latest revision.

Rollback to a previous rule application

// Get a RuleAppRef object which will contain details about the rule app we are

loading

RuleAppRef ruleAppRefLatest = connection.GetRuleAppRef("Historical");

// Get a RuleAppRef object which will contain details about the rule app we want to

become the latest

RuleAppRef ruleAppRefPrior = connection.GetRuleAppRef("RuleAppRollback", 2);

// Load the RuleApplicationDef from the repository, specifying the GUID and

Revision

RuleApplicationDef ruleAppDefPrior =

connection.GetSpecificRuleAppRevision(ruleAppRefPrior.Guid,

ruleAppRefPrior.PublicRevision);

// overwrite the existing rule app with the prior version

connection.OverwriteRuleApplication(ruleAppRefLatest.Guid, ruleAppDefPrior, true,

"replacing latest with prior version");

#endregion

Rollback to a previous rule set

// Get a RuleAppRef object which will contain details about the rule app we are

loading

RuleAppRef ruleAppRefLatest = connection.GetRuleAppRef("InvoiceRollbackExample");

// Load the RuleApplicationDef from the repository, specifying the GUID and

Revision

RuleApplicationDef ruleAppDefLatest =

connection.GetSpecificRuleAppRevision(ruleAppRefLatest.Guid,

ruleAppRefLatest.PublicRevision);

// Get the RuleSet

EntityDef entityDefLatest = ruleAppDefLatest.Entities["LineItem"];

RuleRepositoryDefBase ruleSetDefLatest =

entityDefLatest.GetRuleSet("LineItemRules");

// Check out the RuleApp

connection.CheckoutRuleApplication(ruleAppDefLatest, false, "checking out rule

application");

// Get a RuleAppRef object which will contain details about the rule app we are

loading

RuleAppRef ruleAppRefPrior = connection.GetRuleAppRef("InvoiceRollbackExample", 1);

// Load the RuleApplicationDef from the repository, specifying the GUID and

Revision

RuleApplicationDef ruleAppDefPrior =

connection.GetSpecificRuleAppRevision(ruleAppRefPrior.Guid,

ruleAppRefPrior.PublicRevision);

// Get the RuleSet

Date of Publication: 3/22/2021

Source Code Examples 269

EntityDef entityDefPrior = ruleAppDefPrior.Entities["LineItem"];

RuleRepositoryDefBase ruleSetDefPrior = entityDefPrior.GetRuleSet("LineItemRules");

// Remove the ruleset from the latest revision

entityDefLatest.RuleElements.Remove(ruleSetDefLatest);

// Add prior revision of the ruleset to the latest entity

entityDefLatest.RuleElements.Add(ruleSetDefPrior.Copy());

// Checkin the rule app

connection.Checkin(ruleAppDefLatest, "rolled back to prior revision of

LineItemRules");

6.3.7 Promote a Rule Application from Catalog to Catalog

Prerequisites: Valid RuleCatalogConnection to both Source and Target Catalog.
Namespaces: InRule.Repository
Classes: RuleApplicationDef, RuleAppRef, RuleCatalogConnection
See Also: Creating a RuleCatalogConnection

// Get a reference to the rule application from the source Catalog (doing by name

here, label and revision could be used as well)

RuleAppRef ruleAppRef = sourceConn.GetRuleAppRef("AutoDepreciation");

// Get the rule application from the Source Catalog

RuleApplicationDef sourceRuleAppDef =

sourceConn.GetSpecificRuleAppRevision(ruleAppRef.Guid, ruleAppRef.PublicRevision);

// Promote the rule application to the Target Catalog

RuleApplicationDef targetRuleAppDef =

targetConn.PromoteRuleApplication(sourceRuleAppDef, "Description", "Comments");

Date of Publication: 3/22/2021

InRule Samples

Part

VII

Date of Publication: 3/22/2021

InRule Samples 271

7 InRule Samples

InRule provides numerous samples for learning how to use InRule to its fullest potential. The
samples show how to use InRule within an industry application or demonstrate innovative ways to
apply InRule to specific logic/programming problems.

You can easily browse the sample library on GitHub. To access the samples, launch irAuthor and
select View Samples on GitHub from the main page. Alternatively, you can visit http://
samples.inrule.com, which will redirect you to the GitHub repository.

http://samples.inrule.com
http://samples.inrule.com

Date of Publication: 3/22/2021

Regression Testing

Part

VIII

Date of Publication: 3/22/2021

Regression Testing 273

8 Regression Testing

The InRule Regression Testing feature in irVerify provides a state assertion mechanism similar to
NUnit to test state values after rule execution.

While the user interface for Regression Testing in irVerify provides a rich test authoring experience
using the Business Language editor, the Regression Testing SDK is designed to be used for
programmatic creation of tests, and their execution. This will be a useful feature for automated
software builds to validate the consistency of Rule Applications and their input state.

The Regression Testing user interface is built upon the same API that is exposed in the Regression
Testing SDK; therefore any tests authored in the user interface may also be executed via the SDK
and vice-versa.

See the following topics for detailed information on the Regression Testing SDK:

Regression Testing Concepts

Authoring Test Suites

TestScenario versus EntityState Data States

Executing Test Suites

Outside of the interface in irVerify and irSDK, there is still one more way with which to perform
regression testing with InRule:

Command Line Interface

8.1 Regression Testing Concepts

Test Suite

All authored tests are contained within a Test Suite. A Test Suite provides a programmatic interface
for the adding, removing and finding of tests contained within the suite, provides some test execution
settings and sets up the association with a Rule Application.

A persistence provider can be used with the Test Suite to load and save it from a data store.

The NUnit analog of a test suite is a unit test assembly.

Data States

Data States represent the initial state of a test, prior to rule execution. The XML data contained
within them is loaded into their associated Entities when the tests are executed. Data States may
either represent an irVerify TestScenario (serialized RuleSessionState) or a discrete EntityState.

Individual Data States may be shared by one or more Tests.

Tests

Tests represent a collection of Assertions. They act on a specific context such as an Entity or
Independent RuleSet. They govern whether the RuleSession during Test execution will either
ApplyRules, or execute an explicit RuleSet.

If more than one Data State is used by the test, it also handles the mapping of the Data States to
temporary linked Entity fields or Independent RuleSet’s Entity arguments.

There is always a new RuleSession and RuleServiceConnection created for each Test’s execution.
The following procedure occurs during Test execution:

A new RuleSession and RuleServiceConnection are created for the test, setting up any
EndPoint Overrides that may exist.

Date of Publication: 3/22/2021

InRule Developer Help274

Initial state is loaded into Entities or Independent RuleSets from the Data States.

The RuleSession calls ApplyRules or executes an explicit RuleSet.

The Assertions are processed against the final state, producing results.

The NUnit analog of a Regression Testing Test is a unit test.

Assertions

Assertions validate individual output state values from fields, calculations, collections, notifications or
rule elements against expected values asserted at authoring time. There are many different types of
Assertion to choose from.
When they are executed, they generate either a pass or fail, and highlight their expected and actual
values. For a Test to pass, all of its constituent Assertions must also pass.
The NUnit analog of an Assertion is the Assert statement.

Folders

Folders act as both a user interface feature and a means to group common Tests together. While
folders may contain any Regression Testing construct, they are primarily used to provide a
hierarchical grouping for Tests.

All Data States are contained within a root Data State folder on the Test Suite. Although an SDK
author may use folders to group Data States hierarchically, this is prohibited in the user interface as
it serves no purpose.

There is also a root Test folder on the Test Suite. This may contain a mixture of Tests and other
Folders which may contain their own Folders and Tests.

Tests may be executed at the folder level so that only a specific group of Tests is executed.

The NUnit analog of a Folder is a TestFixture.

Data State Overrides

These provide the ability to override individual state values at Test execution time. By applying them
to a Test, the value of a single field may be modified, which overrides its original input state defined
in the Test’s Data State.

This feature may be useful if some of the Rules change in a Rule Application, and the Test’s
DataState requires fine-grained adjustment in order to satisfy the Test’s Assertions.

8.2 Authoring Test Suites

The classes required for Test Suite authoring are located in the InRule.Repository assembly beneath
the InRule.Repository.Regression namespace.

See Authoring a Simple Test Suite for Regression Testing for a sample

Most of the authoring Def classes inherit from the IdentifiedDefBase class, which simply provides
them with a GUID identifier to assist persistence. The DefBase also provides them with the following:

Container property - Reference to the FolderDef container.

Parent property - Reference to the parent collection or Def.

GetAncestor<T> method - The first ancestor in the parent hierarchy matching the type T.

It is unlikely you will need to use these members for regular Test Suite authoring. They are
provided, along with the INotifyPropertyChanged interface, to assist the user interface.

API Documentation

Most members of each class are self-explanatory, so only the members of interest will be mentioned:

Date of Publication: 3/22/2021

Regression Testing 275

TestSuiteDef

ActiveRuleApplicationDef - Use this property to associate a RuleApplicationDef with the Test
Suite. This should be the first step performed after creating the Test Suite. The setter
contains validation logic against existing Tests and Data States in the Test Suite so an
InvalidRuleAppForTestSuiteException will be thrown containing the GUIDs of invalid Tests and
Data States if the Rule Application’s schema does not match up. Also, a
MismatchedTestSuiteRuleAppGuidException will be thrown if the Rule Application’s GUID
identifier does not match up with the one used when then Test Suite was authored.

RootDataFolder - Use this property to add each new DataStateDef to the TestSuiteDef. This
should be performed in addition to assigning the DataStateDef to a TestDef.

RootTestFolder - Use this property to add each new TestDef or FolderDef to the TestSuiteDef.

Settings - Use this property to access the TestSuiteSettingsDef which should always exist for
a TestSuiteDef.

Create() - Use this method to create a new empty TestSuiteDef instance. There is no public
constructor on the TestSuiteDef to prohibit direct XML serialization; use the SaveAs() and
Save() methods to achieve serialization via a persistence provider.

LoadFrom() - Use this static method to load an existing TestSuiteDef from the specified
persistence provider.

Save() - Use this method to save the current TestSuiteDef with the persistence provider
previously set using the SetPersistenceProvider() method.

SaveAs() - Use this method to save the current TestSuiteDef with the specified persistence
provider.

TestSuiteSettingsDef
There is a 1:1 relationship between the TestSuiteDef and the TestSuiteSettingsDef. It represents the
TestSuiteDef during serialization and contains settings for test execution, information Rule Application
data, and the origin of a FileSystem or Catalog Rule Application when using the stand-alone version
of the user interface.

IncludeRuleExecutionLog - Use this property to indicate whether the test results should
contain the RuleExecutionLog that was generated by the RuleSession when the test executed.

IncludeXmlRuleTrace - Use this property to indicate whether the test results should contain
the XML Rule Trace that was generated by the RuleSession when the test executed. This
should be used in conjunction with the TraceFrameTypes property on the
RuleExecutionSettings.

TestDef

Assertions - Use this collection to add AssertionDefs to the Test.

DataStates - Use this collection to add DataStateMappingDefs to the Test. The mappings
connect EntityState Data States together to form a RuleSessionState. If there is only 1
EntityState Data State, or a TestScenario Data State, this will be identified as the “-
Root-“mapping.

IsEnabled - The test execution will skip this test if this property is set to true.

Overrides - Use this collection to apply DataStateOverrideDef instances to the test. This
allows either an individual field value to be changed in the initial state, or a collection member
to be added.

RootContext - Use this property to set the TestContextDef instance which represents the
context (Entity or Independent RuleSet) on which the test will execute. It is more common to
pass this into the constructor of the TestDef.

TestContextDef
An instance of a TestContextDef should be generated from the static Create() factory method, rather
than instantiating it with its constructor and settings all of its properties.

Create() - Use this static method to create a new instance of the TestContextDef. Its
overloads allow either an EntityDef or RuleSetDef to be passed in, depending on the context
required.

RootContextName - Use this property to set the root context on which the test should
execute. This should match the RootEntityName of the root DataStateMappingDef’s

Date of Publication: 3/22/2021

InRule Developer Help276

DataStateDef. The Create() method should automatically populate this.

ExecutionType - Use this property to set the rule execution type (ApplyRules, Execute Explicit
RuleSet, Execute Independent RuleSet).

ExecuteRuleSetName - Use this property to set the name of the RuleSet to execute. (Does
not apply to ApplyRules execution type)

DataStateDef

DataStateType - Use this property to set the type of Data State: TestScenario or EntityState.

RootEntityName - This should be set to the root Entity name that this DataStateDef
represents. If the DataStateType is TestScenario and an Independent RuleSet is the root,
then use the name of the Independent RuleSet.

RootEntityStateId - This should only be set when the DataStateType is TestScenario. In
certain scenarios the EntityStateId of the root Element ID, or Independent RuleSet is not 1.
(e.g. Entity1::4) If the DataStateType is EntityState or the TestScenario’s root EntityStateId
is 1, you can safely leave this property unset, as it defaults to 1.

StateXml - Use this string property to store the XML of either the TestScenario or the
EntityState. The TestScenario XML can be obtained by using the XmlSerializer.Serialize() on
a RuleSessionState instance (accessible from RuleSession.State property). EntityState XML
can be obtained from the Entity.State.GetXml() method.

DataStateMappingDef

ArgumentName - Use this property to set the name of either the Independent RuleSet Entity
argument, or the name of a root-level temporary linked Entity field.

DataState - Use this property to set the DataStateDef that should be mapped to the specified
argument or field.

FolderDef

FolderType - Use this property to set the type of folder. (TestFolder or DataFolder). This
should always be set to TestFolder as all Data States should exist at the root level of the
TestSuiteDef’s RootDataFolder.

Members - Use this collection to assign TestDefs to the FolderDef. During the Add() method,
the TestDef’s GUID is used to add a ReferenceToDef instance (instead of the TestDef itself) to
the underlying collection.

ReferenceToDef
This class is used to represent a TestDef, DataStateDef or FolderDef in the hierarchy beneath a
FolderDef. This is because the default persistence provider implementation stores the Defs
relationally in separate files (in a zip file) rather than hierarchically in a single file. When iterating the
FolderDef.Members collection, use the ReferenceToDef.EnsureReferencedDef() method to access the
actual TestDef, DataStateDef or FolderDef. Alternatively, use the ReferenceToDef.ReferencedDefId
to pass into the TestSuiteDef.GetTest()/GetDataState()/GetFolder() methods, depending on the
IsDataStateDef, IsTestDef, IsFolderDef properties.

DataStateOverrideDef

DataOverrideType - Use this property to set the type of override. (SetValue or
AddCollectionMember)

TargetPath - Use this property to set the path to the state value to override using object-
relational path (dot) notation. (E.g. Entity1.Collection1(1).Field1)

Value - Use this property to set the value of the override. This does not apply to the
AddCollectionMember type.

AssertionDef

AssertionType - Use this property to set the type of Assertion. The AssertionType enum
currently contains 29 different types of Assertion to choose from, e.g. FieldIsEqualToX,
CollectionCountIsX.

ExpectedValue - Use this property to set the string representation of the expected value of
the Assertion. Not all Assertions have an expected value, e.g. FieldIsNotNull. The string
representation should be in the culture-invariant format. Dates should be stored as “#mm/

Date of Publication: 3/22/2021

Regression Testing 277

dd/yyyy#”.

ExpectedValueType - While the Business Language editor can determine the data type of the
field from the Rule Application, SDK users should explicitly set this property to the correct
data type.

TargetElementPath - Use this setting to set the target of the Assertion using object-relation
path (dot) notation. (E.g. Entity1.Collection1(1).Field1)

ZipFileTestSuitePersistenceProvider
This is currently the only persistence provider implementation which stores XML serialized
TestSuiteSettingsDef, FolderDefs, TestDefs and DataStateDefs in individual files within a zip file.
SDK users need only pass the output path to its constructor and pass it to the TestSuiteDef.SaveAs()
method.
To implement custom persistence providers, create a derived class that inherits from the
TestSuitePersistenceProvider base class.

8.3 TestScenario versus EntityState Data States

EntityState XML has the simplicity of being an easily constructed XML document which may either be
written by hand (e.g. <Entity1><Field1>5</Field1><Field2>10</Field2></Entity1>) or XML
serialized using end-users’ own classes.

TestScenario is a more complicated structure which can only be generated by using XmlSerializer on
the RuleSessionState class. (RuleSession.State)

The advantages of the TestScenario are:

It includes temporary state fields and collections which are used for both temporary state,
and also cross-schema linked Entities and Collections.

It will work with object-bound schemas that only work with the BinaryFormatter and not the
XmlSerializer.

It will support circular references.

EntityState XML may still be used to some degree for temporary fields via a collection of the
DataStateMappingDef instances. This is restricted to:

Root-level temporary linked Entity fields.

Independent RuleSet Entity arguments.

Note - In most testing situations, it is suitable for the user to utilize testscenarios unless the state
data must be consumed or deserialized by a separate application.

8.4 Executing Test Suites

The classes required for Test Suite execution reside in the InRule.Runtime.Testing assembly.

See Executing a Simple Test Suite for a sample

API Documentation

TestingSessionManager
This class handles the RuleSession and RuleServiceConnection generation for each TestDef that is
executed. It handles the construction of a RuleSessionState from either a TestScenario or discrete
EntityState Data States.

TestingSessionManager() - The constructor of this class requires an instance of an
IConnectionFactory implementation. This ensures that a new RuleServiceConnection is
created for each Test execution, and its correct EndPoint overrides are used.

Date of Publication: 3/22/2021

InRule Developer Help278

CreateTestingSession() - This method takes a Runtime RuleApplicationReference parameter.
If there is only a RuleApplicationDef available, wrap it in an
InMemoryRuleApplicationReference instance. It also must be passed a TestDef parameter in
order for the DataState mapping retrieval. There is also an out parameter of rootEntityId.
This is the EntityStateId integer identified from the root context of a TestScenario.

RegressionTestingSession
This class is the entry-point for Test execution. Its constructor must be passed an instance of the
TestingSessionManager for RuleSession management, and a valid TestSuiteDef to execute against.
There is an optional constructor overload that also accepts a Runtime RuleApplicationReference
instance which can be used if the TestSuiteDef has no ActiveRuleApplicationDef.

ExecuteAllTests() - This method will execute all Tests within the Test Suite, returning a
collection of Test results.

ExecuteTests() - This method will execute Tests based on the overload parameters passed in.
 It will execute: A single folder, a list of folders, a list of tests, or a list of folders and tests,
returning a collection of Test results.

TestResultCollection
This class represents an immutable collection of TestResults. It can only be created from one of the
RegressionTestingSession’s Execute methods. A list of TestResults can be enumerated from this
class. The SaveAs() and LoadFrom() methods can be used to load and save the TestResults into a
zip file. In addition to the TestResultCollection.xml file stored within the zip file, the TestSuiteDef files
and the RuleApplicationDef.xml are also stored. This will provide an accurate audit trail of which Rule
Application was executed against which Test Suite in order to produce the results.

Note: Any instance of this class should be explicitly disposed after use to ensure any temporary files
it created are cleaned up.

TestResult
This class gives an overview of the result of all the Assertions executed in the Test. The Passed
property will only be true if all the AssertionResults in its collection also passed. Other properties of
interest:

RuntimeErrorMessage - This property will contain the error messages of any errors
generated, or exceptions thrown during rule execution for this Test. It may also contain
errors generated from the Assertion processing after the rule execution has run.

RuleExecutionLog - This will be populated with the RuleExecutionLog generated from the
ApplyRules() or RuleSet.Execute() when the rules were executed. Its output is optional based
on the Boolean setting stored in the TestSuiteSettingsDef.

XmlRuleTrace - This will contain a StringBuilder instance of the XML version of the RuleTrace
generated during rule execution. Its output is optional based on the Boolean setting stored in
the TestSuiteSettingsDef, and also if any TraceFrameTypes are specified in the irVerify
options. Currently these options are only accessible from the hidden irVerify options here:
InRule.Runtime.Testing.UserSettings.CurrentTesterOptions.TraceFrameTypes.

AssertionResult
This class represents the result of each AssertionDef executed in a Test. The ExpectedValue and
ActualValue fields will contain the values in culture-invariant format. For culture-specific data, use
the FormattedExpectedValue and FormattedActualValue properties.

8.5 Command Line Interface

A command-line interface for executing Regression Testing Test Suites is provided with InRule.

The command-line interface can be used to integrate Regression Testing execution into a build
process, for example. The command-line executable is installed with irAuthor and is called
irVerify.exe.

Date of Publication: 3/22/2021

Regression Testing 279

Command Line Usage

irVerify.exe /s TestSuitePath

[/n TestName[,TestName2,...,TestNameN]]

[/f FolderName[,FolderName2,...,FolderNameN]]

[/r TestResultsPath]

[/l RuleApplicationLocationURI]

[/w]

/s TestSuitePath Required parameter. Specifies the path to the Test Suite
file to be executed.

/n TestName Optional parameter. Comma separated (no spaces) list of
test case names to be executed.

/f FolderName Optional parameter. Comma separated (no spaces) list of
folder names to be executed.

/r TestResultsPath Optional parameter. Specifies path to test results file to be
saved.

/l RuleApplicationLocationURI Optional parameter. Specifies the location of the Rule
Application to be tested. This is a file path for file based
Rule Applications and a URI for irCatalog based Rule
Applications.

Note: This parameter is required unless the Test Suite
was created via the SDK. If using the SDK, the Rule
Application location can be embedded within the Test Suite
file.

/w Optional parameter. Suppresses windows.

Usage Examples

 The following examples will be based on a Rule Application called ExampleRuleApp. The rest of the
information about this Rule Application is listed in the table below.

/s TestSuitePath Example.testsuite

/n TestName ExampleTestCase1, ExampleTestCase2

Note: These are tests within Example.testsuite

/f FolderName ValidationTestFolder and PromotionTestFolder

Note: These are folders within Example.testsuite that
contain tests

/r TestResultsPath Example.testresults

Note: This file will be created if this parameter is used. If
the file already exists, it will be overwritten. This zipped
results file will contain results and a snapshot of the Test
Suite/Rule Application at the time of test execution.

/l RuleApplicationLocationURI If the Rule Application is saved in irCatalog:
Catalog Service Address, including "catalog" prefix +

Date of Publication: 3/22/2021

InRule Developer Help280

Rule Application Name (catalog.http://Server/
InRuleCatalog/Service.svc/ExampleRuleApp)
Catalog Username/Password (username/password)

If the Rule Application is saved to file:
File system path (C:\RuleApps
\ExampleRuleApp.ruleappx)

Execute a couple of test cases from a Test Suite.

> irVerify /s Example.testsuite /n ExampleTestCase1,ExampleTestCase2 /l
ExampleRuleApp.ruleappx

Execute all test cases from a Test Suite and save the results.

> irVerify /s Example.testsuite /r Example.testresults /l ExampleRuleApp.ruleappx

Execute all test cases found in the folders specified and their subfolders.

> irVerify /s Example.testsuite /f ValidationTestFolder,PromotionTestFolder /l
ExampleRuleApp.ruleappx

Execute test cases for a Rule Application that is stored in irCatalog.

> irVerify /s Example.testsuite /l catalog://username:password@Server/InRuleCatalog/
Service.svc/ExampleRuleApp

Identical to the command above but uses the explicit form of the scheme to indicate it is
using HTTP as opposed to HTTPS.

> irVerify /s Example.testsuite /l catalog.http://username:password@Server/InRuleCatalog/
Service.svc/ExampleRuleApp

Execute test cases for a Rule Application that is stored in irCatalog that is hosted on a HTTPS
host.

> irVerify /s Example.testsuite /l catalog.https://username:password@Server/InRuleCatalog/
Service.svc/ExampleRuleApp

Execute test cases for a Rule Application that is stored in irCatalog that uses single-sign-on
(SSO).

> irVerify /s Example.testsuite /l catalog.http://Server/InRuleCatalog/Service.svc/
ExampleRuleApp

Execute test cases from a Test Suite that was created via the SDK. Using the SDK, you can
save the Rule Application location within the Test Suite file. The Rule Application must exist on the
file system relative to where the Test Suite file was originally saved.

> irVerify /s Example.testsuite

For simplicity, all the examples above assumed that everything is saved within one folder. If this is
not the case, you may use the full file path or the relative file path for the Test Suite, test results,
and Rule Application. In the following example, the command is being executed from C:\InRule
where irVerify.exe is located. Test Suite uses the full file path and Rule Application uses the relative
file path.

Date of Publication: 3/22/2021

Regression Testing 281

>irVerify /s C:\RuleApps\Example.testsuite /l ..\RuleApps\ExampleRuleApp.ruleappx

Date of Publication: 3/22/2021

Rule Tracing

Part

IX

Date of Publication: 3/22/2021

Rule Tracing 283

9 Rule Tracing

Overview

The InRule Rule Engine provides the following ways to obtain detailed logs of events that occur
during execution to aid the debugging of a rule application:

The RuleExecutionLog class provides information on state changes and rules firing.

Rule tracing provides the chronological sequence of activities, including the constituent
components the rule engine uses to evaluate a rule

As with the RuleExecutionLog, rule tracing is accessible after either an ApplyRules or ExecuteRuleSet
has been issued to the RuleSession. By default, rule tracing is disabled; it can be enabled either
through irVerify or programmatically through irSDK. Unless the trace is persisted, it will be replaced
during a subsequent rule execution. Rule tracing does not have to capture every activity that occurs
during rule execution; it can be selective based on a filter constructed prior to rule execution. The
output of the rule trace is presented in XML form. A user may elect to output the rule trace as XML in
its entirety, or navigate to and output a specific section using a trace reader provided by irSDK.

The following topics provide assistance for working with rule tracing:

Rule Tracing Concepts

Rule Tracing SDK Overview

Working with the Trace Viewer through irSDK

A developer can also work with irSDK to create and persist rule traces using a variety of
configuration options. Refer to the Runtime API Examples for further detail.

Long-running / Complex Rule Executions

Rule Tracing has been optimized to minimize memory use and reduce performance overhead.
However, there is always going to be some noticeable drag on performance when tracing is enabled.
 By default, tracing is disabled (TraceFrameType.None) so tracing is an explicit opt-in requirement.

A rule execution with all frame types enabled, producing several hundred thousand or even million
trace frames may be unmanageable when used within irVerify. Using the irSDK to write XML to a file
instead of an in-memory object or string is sometimes a better approach.

The total number of frames reported by the RuleExecutionLog.TotalTraceFrames property provides
an idea of the trace size before attempting to render it. In some cases a large trace can take several
minutes to render even on a fast machine. The value of TotalTraceFrames can be checked before
calling RuleExecutionLog.GetExecutionTrace().

Temporary Trace File Location

During rule execution, the trace files will be persisted under the InRule temporary file location. By
default this located at %TEMP%\InRule\Temp.

9.1 Rule Tracing Concepts

Trace Frame
Activities logged by the rule tracing are represented as Trace Frames. A frame may encapsulate
aspects and other frames.

A frame has the following mandatory attributes:

FrameId - The unique frame identifier.

Timestamp - The point in time the activity was recorded.

FrameType - The type of activity being traced. (E.g. SetValue, EvaluateRule,

Date of Publication: 3/22/2021

InRule Developer Help284

ValueChanged.)

It may also have the following optional attributes:

SourceDefId - The GUID of the Def in the RuleApplication relating to this activity.

StateId - The ElementIdentifier relating to this activity. (E.g. {Entity1::1}/Entity1/Calc1)

Aspect
Aspects represent properties specific to each rule engine activity. They exist as a name-value
pair.
E.g. Name=Result, Value=1234.

Frame Type
Each frame has a type to describe the type of activity being traced. The frame types to be
recorded can be configured using irSDK at either a high-level
(RuleExecutionSettings.EnableRuleTracing) for trace event visualization, or fine-grained
(RuleExecutionSettings.TraceFrameTypes) for low-level debugging. irVerify uses the high-level
settings.

Trace Events
If the trace is viewed from irVerify (or the EventReader is used from irSDK), the Trace Frames
are converted into a high-level list of Trace Events. A Trace Event is the result of a collection of
Trace Frames. The events closely represent the logical flow of the authored rules and can be
viewed in irAuthor to assist debugging rule execution.

A Trace Event may encapsulate a list of Attributes and Evaluations.

Attributes - A name-value pair belonging to the event.

Evaluations - The decomposition of source syntax rules and their evaluated results.

A Trace Event has the following attributes:

EventId - The unique event identifier.

ParentEventId - The parent event identifier.

Timestamp - The point in time the event’s root Trace Frame was recorded.

EventFraneId - The identifier of the event’s root Trace Frame.

DisplayName - The display text of the original authored rule.

Result - The result of the rule or action, if there is one.

Context - The context under which the event took place. (E.g. Entity1, RuleSet1)

StateId - The ElementIdentifier relating to this event. (E.g. {Entity1::1}/Entity1/
Calc1)

Date of Publication: 3/22/2021

Attribution

Part

X

Date of Publication: 3/22/2021

InRule Developer Help286

10 Attribution

InRule, InRule Technology, irAuthor, irVerify, irServer, irCatalog, irSDK and irX are registered
trademarks of InRule Technology, Inc. irDistribution and irWord are trademarks of InRule
Technology, Inc. All other trademarks and trade names mentioned herein may be the trademarks of
their respective owners and are hereby acknowledged.

Date of Publication: 3/22/2021

Index 287

Index
- . -
.NET 10, 20, 208, 248, 249, 250, 251, 253, 255,
256, 260, 261, 262, 263, 264, 265, 266, 267, 269

- A -
AccessDbLocation 241, 242

Activation 155

Adapater 128, 129, 132

AddCollectionMember 225

Anatomy 166, 168

API 10, 20, 208, 248, 249, 250, 251, 253, 255, 256,
260, 261, 262, 263, 264, 265, 266, 267, 269

Application 174, 208

Apply 210, 233

apply rules 57

Applying 210, 233

ApplyRules 77, 210, 227, 233

Architecture 22, 23, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 186, 187, 188, 194, 195

Area 210, 233

assemblies 24

Assembly 24, 141

Asynchronous 227

Attribute 239

Authoring 142, 143, 145, 248, 249, 250, 251, 253,
255, 256, 260, 261, 262, 264, 265, 266, 267, 269

- B -
Batch 178

BizTalk 183

Biztalk Server 22, 128, 129, 132

Bus 177

Business Language 142

- C -
Cache 234, 235, 236

Cache Depth 35

Cache Settings 35

Calling 210, 233

Catalog 28, 40, 42, 189, 190, 191, 192, 193, 194,
195, 205, 263

Catalog Service 40, 42

CatalogService 42

CMD line 278

Code 10, 68, 208, 221, 222, 224, 227, 234, 237,
240, 248, 249, 250, 251, 253, 255, 256, 257, 259, 260,
261, 262, 263, 264, 265, 266, 267, 269

Code Examples 217, 219

Cold Start Mitigation 196, 198

Collection 208, 224, 225

collections 224

COM 142

COMA 142

ComboBox 239

COM-compliant 142

Command Line 273, 278

Common 180

Compile 54, 235

Compiled Rule Application 35, 45

Condition Editor 262

Config 28, 40

Config File 28, 32, 35, 36, 38, 40, 42, 45

Config Files 22, 28

Console 210, 233

Control 142, 143, 145, 250, 253, 255, 256, 260,
261, 262

Counters 50

create entity 56

CreateEntity 210, 233

CreateRuleSet 229

credentials 28, 46

CRM 184

Culture 141

Custom 208

- D -
Data Access 182, 187

Data Query Cache 36

Database Path 42

DatabaseConnection 241, 242

Deactivation 155

Decision Table 142

dependencies 24

Deployment 155

Deployment Scenarios 22

Developer 10

Date of Publication: 3/22/2021

InRule Developer Help288

Directory 159

Disconnected 179

Disparate Platforms from .NET 22

Dropdown 239

Dynamics 184

- E -
Editor 142

ElementInfo 238

Embed 142, 143, 145, 250, 253, 255, 256, 260,
261, 262

embedded controls 259

enableRepositoryServiceAggrStats 42

EndPoint 241, 242

EndPointAssembly Folder 38, 45

EndPointOverrides 241, 242

EndPoints 208

Engine 142, 208

Enterprise 177, 188

entities 222

Entity 208, 213, 214, 215, 223, 224, 230, 232

Entity Framework 182, 187

Entity Link 226

EntityIdentifier 223

EntityInfo 238

EntityState 208, 213, 214, 215

EntityStateViewer 240

EntityTester 240

error 52

Error Handling 72

Errors 72

ESB 177

Event 50, 51, 61

Event Log Source 155

Events 208

example 68, 128, 147, 208, 217, 219, 221, 222,
224, 227, 234, 237, 240, 248, 255, 257, 259

Examples 208, 209, 215, 248, 249, 250, 251, 253,
255, 256, 260, 261, 262, 263, 264, 265, 266, 267, 269

Exceptions 72

Execute 229

Execute Independent Rule Set 92

Execute Rule Set 59, 104

ExecuteRuleSet 227

executing 227

Expression Shape 128

- F -
Field 223, 224

fields 208, 222

FieldsSetting 208

File System 189, 190, 191, 192, 193, 194, 195

FileSystemRuleApp 210, 233

- G -
gcServer 40

General 166

GetActiveNotifications 229

GetActiveValidations 229

GetCollection 224, 225

GetField 210, 223, 233

Guide 166

- H -
Host 142

Hosting irCatalog on IIS vs Windows Services 196

Hybrid 192

- I -
IIS 205

Implementation 166, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 186, 187, 188

In Process 209

Independent 208, 229

info 54

Inline Table 254

InMemoryRuleApp 211, 228, 231

InProcessConnection 210, 233

InRule 3.x 12

InRule 4.0 12

InRule 4.1 12

InRule 4.5 12

InRuleRepositoryService 42

Instantiate 210, 233

Integration 22, 180

Interacting 142

InvalidMessageText 229

irAdapter 128

irAuthor Extensions 145, 146, 147, 151

Date of Publication: 3/22/2021

Index 289

irSDK 24

irServer 22, 28, 65, 67, 68, 71, 72, 74, 221

irServer Rule Execution Service 128, 217, 219

irverify 240, 278

- J -
Java 142

JavaScript 28

Job 178

JSON 217

- L -
Labels 191, 193, 194, 195

License File Location 45

Licensing 155

Load 213, 215

Log 50

Logging 32, 45, 50, 51, 61, 137, 203

Logging Metrics 246

- M -
Managing the Ruleapp Cache 196

MaxItemsInObjectGraph 42

Member 208

Message 210, 229, 233

Messaging 177

Metadata 237, 238, 239

Migrate 12

MQSeries 142

MSMQ 142

Multi-threading Rule Execution 196

- N -
NET 142

Notification 229

Notifications 208

NuGet 25

NuPkg 25

- O -
Object Model 20

Objects 42

OLEDB 241, 242

OleDbConnection 241, 242

OracleConnection 241, 242

Orchestration 128

Oriented 173

- P -
Packages 25

Perfmon 50

Performance 50

Performance Log 232

Performance Statistics Report 64

Platforms 142

PowerShell Cmdlet 273

Process Flow 23

Process Flow, Rule Execution 22

- R -
Rectangle 210, 233

regression 257

Regression Testing 273, 274, 277, 278

Repository 28, 40, 61, 248, 249, 250, 251, 253,
255, 256, 260, 261, 262, 263, 264, 265, 266, 267, 269

repository service 40

RepositoryRuleApp 211, 228, 231

RepositoryService 42

Request 166, 168

REST 28, 46, 127, 128, 215, 217, 219

Retention 235

rpw 208

Rule 166, 168

Rule Application Cache 234

Rule Deployment 189

Rule Execution 23, 196

Rule Execution Concepts 196

Rule Execution Service 68, 221

Rule Management 189, 190, 191, 192, 193, 194,
195

Rule Tracing 243, 283

RuleApp 210, 211, 228, 231, 233

Ruleapp Cache 202

RuleApplicationDef 248, 249, 250, 251, 253, 255,
256, 260, 261, 262, 264, 265, 266, 267, 269

RuleApplicationInfo 237, 238, 239

RuleCatalogConnection 264, 265, 266, 267

Date of Publication: 3/22/2021

InRule Developer Help290

RuleElementInfo 238

RuleException 210, 233

Rules 227

RuleService 72

RuleSession 208, 211, 212, 213, 223, 230, 232,
237, 238, 239

RuleSet 208, 229

Runtime 28, 208

RuntimeClasses 210, 233

- S -
sample 68, 221, 222, 224, 227, 234, 237, 240, 248,
255, 257, 259

Sample Applications 271

Save 214

Scenarios 180

Scheduling 178

Schema Assembly Optimization 22

SDK 10, 20, 208, 248, 249, 250, 251, 253, 255,
256, 260, 261, 262, 263, 264, 265, 266, 267, 269

SendMailServer 241, 242

Service 173, 177, 215

Service Reference 67, 74

Services 175

Session 211, 212

SetField 224

Settings 28, 32, 35, 36, 38, 40, 42, 45

SetValue 210, 233

SetValueActionDef 257

SharePoint 186

Sharing 266

SmtpServer 241, 242

SOA 173

SOAP 68, 221

Source 208

source code 128

SqlConnection 241, 242

State 213, 214, 215, 229

State Refresh 141

StateViewer 208, 240

Statistics 50

Synchronous 227

- T -
Temp 159

Temporary 159

Test 240

Test Suite Authoring 257

Test Suite Execution 245

Test Suites 273

tester 257

Testing 240

TestScenario 273

TestScenario v. EntityState Data States 277

Threading 196

ToDecimal 210, 233

Trace Viewer 244

Tracing 243, 283

Troubleshooting Installed Services 196

- U -
Upgrade 12

- V -
Validatoin 229

Value List 254

ValueList 239

- W -
warn 53

WCF 181, 188

Web 176

Web Services 181, 188

Web-based help 127

WF Activity 133, 134, 137

Where Does Rule Execution Occur? 196

Windows Service 205

Windows Workflow Foundation 22, 133, 134, 137

WinForms 145

Workflow 168

WriteLine 210, 233

WsHttpBinding 71

- X -
XCopy 155

XML 219

Date of Publication: 3/22/2021

For more information about InRule, please visit https://www.inrule.com.

For support please visit https://support.inrule.com

If you would like to report an issue or request a feature enhancement, please email
support@inrule.com.

	InRule SDK Developer's Guide
	Migration Considerations
	irSDK Object Model
	Application Integration with InRule
	InRule Product Architecture
	Rule Execution Process Flow
	irSDK Assembly Information
	Using InRule NuGet Packages
	Configuration Files
	InRule Runtime Config File Settings
	InRule Logging Config File Settings
	Rule Application Cache Settings
	Data Query Cache
	EndPoint Assemblies Folder
	Execute Query Timeout
	.NET Framework Runtime Config Settings With InRule

	InRule Catalog Service Config File Settings
	Additional Catalog Service Config Settings

	InRule Authoring/Client Config File Settings
	InRule Runtime Service Config File Settings

	Performance Logging and Monitoring
	Event Log Details
	Runtime Event Log Details
	Runtime Error Level Logging
	Runtime Warn Level Logging
	Runtime Info Level Logging
	Compile Event
	Create Entity Event
	Apply Rules Event
	Execute Rule Set Event

	Repository Event Log Details

	Performance Statistics Report

	irServer - Rule Execution Service
	Accessing via SOAP
	Adding a Service Reference in Visual Studio
	Calling irServer SOAP Endpoint using a Service Reference
	Executing a Decision on irServer SOAP endpoint using a Service Reference
	Configuring irServer SOAP Endpoint to Support WsHttpBinding
	Handling irServer SOAP Endpoint Error Conditions
	Caching Behavior

	Accessing via REST
	Methods
	Apply Rules
	Execute Decision
	Execute Independent Rule Set
	Execute Rule Set

	HTTP Request Member Definitions
	Parameter
	RuleApp
	RepositoryRuleAppRevisionSpec

	RuleEngineServiceOptions
	RuleEngineServiceOutputTypes

	Overriding RuleApp Endpoints at Runtime
	Database Connection String
	Mail Server Connection
	Web Service Address
	Web Service WSDL Uri
	Web Service MaxReceivedMessageSize
	XML Document Path
	XML Schema
	XML Schema Validation
	Inline Table
	Inline XML Document
	Inline Value List
	SQL Query
	REST Service X.509 Certificate Path
	REST Service Authentication Type
	REST Service Root Url
	REST Service Allow Untrusted Certificate

	Enabling Web-based help
	Source Code Examples

	Calling InRule from BizTalk Server
	Calling InRule from a BizTalk Orchestration
	Using irAdapter for BizTalk Server
	Using the BizTalk Message Assignment Shape

	Calling InRule from Windows Workflow Foundation
	Installing the Activity
	Configuration of the Activity
	Rule Execution Log Service

	.NET Assembly Object State
	Differences in Assembly Binding Behavior at Runtime vs Authoring-time
	Binding to Collections
	.NET Assembly State Refresh Options

	InRule Culture Settings
	Interacting with Non .NET Platforms
	Embedding Authoring Controls
	The Process of Embedding InRule Controls
	WinForm Considerations

	Customizing irAuthor with Extensions
	The Rule Authoring Framework
	Example of Creating an irAuthor Extension
	Extension Advanced Topics

	License Activation Utility
	InRule Temp Files
	irSDK for .NET Core

	Implementation Guide
	High-level Implementation Guidelines
	Anatomy of a Rule Request
	Typical Rule Request Workflow
	Service-Oriented Rule Architectures

	Application Architectures
	Rule Services
	Web Applications
	ESB and Messaging
	Job Scheduling and Batch Processing
	Desktop and Disconnected Applications

	Common Integration Scenarios
	Web Services
	ASP.NET MVC
	BizTalk
	Dynamics CRM
	SharePoint
	Entity Framework
	Enterprise Rule Services

	Rule Deployment
	Rule Management with Multiple Catalogs
	Rule Management with Labels
	Rule Management Hybrid
	Rule Management with Files
	Catalog Deployment with Co-located Services
	Catalog Deployment with Separate Servers

	Performance Tuning and Best Practices
	Multi-threaded Rule Execution
	Cold Start Mitigation
	Managing the Rule Application Cache
	Event Log
	Rule Engine Execution Log
	Hosting irCatalog on IIS vs Windows Services

	Source Code Examples
	Runtime API Examples
	Calling the Rules Engine - In Process
	Basic Example of Calling the Rule Engine
	Opening a Rule Application for Execution
	Creating a RuleSession
	Creating a RuleSession with Cache Retention
	Creating Entities
	Alternate ways to Load State for Entities
	Retrieving Entity State
	Working with RuleSession State

	Calling the Rules Engine as a Service
	Synchronously calling the REST Service
	Asynchronously calling the REST Service with JSON
	Asynchronously calling the REST Service with XML
	Calling the SOAP EndPoint using a Service Reference

	Retrieving and Setting Fields and Entities
	Retrieving an Entity from the RuleSession
	Retrieving Fields
	Setting Fields

	Working with Collections
	Looping Through a Collection
	Adding a Member to a Collection
	Resolving Field Types at Runtime

	Executing Rules
	Applying Rules
	Applying Rules with an Activation Model
	Executing Decisions
	Executing an Independent Rule Set or Rule Flow
	Checking for Notifications and Validations
	Handling Exceptions
	Runtime Settings
	Retrieving and Processing the RuleExecutionLog
	Retrieving the Performance Log
	Retrieving the Performance Statistics Report

	Working with the Rule Application Cache
	Adding Items into the Cache
	Managing the Cache
	Controlling Compilation and Cache Retention
	Iterating Items in the Cache

	Working with Rule Application Metadata
	Using the RuleApplicationDef Object
	Retrieving Definition Objects at Runtime
	Using Element Metadata
	Working with Attributes
	Working with Value Lists

	Other
	Launching irVerify and the State Viewer from code
	Overriding EndPoints at Runtime
	Overriding DataElements at Runtime
	Overriding Culture Settings at Runtime
	Rule Tracing Input and Output through irSDK
	Working with the Trace Viewer through irSDK
	Executing a Simple Test Suite
	Logging Metrics

	Authoring API Examples
	Developing against the RuleApplicationDef Object Model
	Working with a RuleApplicationDef for Authoring
	Basic Example of Creating a Rule Application in Code
	Working with RuleSets
	Dynamically Generating a Rule Application Schema
	Modifying EndPoints
	Authoring a UDF in Code
	Inline table and Value lists access

	Working with Advanced Definition Objects
	Removing Templates in the Language Editor
	Determine FieldDef Dependencies

	Working with the Regression Tester SDK
	Authoring a Simple Test Suite for Regression Testing

	Embedding Authoring Controls
	Embedding InRule Default Editors
	Embedding the Language Rule Editor
	Embedding the Decision Table Editor
	Embedding the Condition Editor

	Catalog API Examples
	Creating a RuleCatalogConnection
	Opening a RuleApplicationDef for Authoring from Catalog
	Working with RuleApplicationDef in the Catalog
	Working with Rule Elements in the Catalog
	Sharing Elements in the Catalog
	Performing Rollbacks in the Catalog
	Promote a Rule Application from Catalog to Catalog

	InRule Samples
	Regression Testing
	Regression Testing Concepts
	Authoring Test Suites
	TestScenario versus EntityState Data States
	Executing Test Suites
	Command Line Interface

	Rule Tracing
	Rule Tracing Concepts

	Attribution

